科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网服务器频道高性能计算必知:企业IT大数据问题的分析及现状

必知:企业IT大数据问题的分析及现状

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

之前对于大数据只是一个概念,而今已经有很多企业和厂商在开始行动,但目前需要做的是如何迎接大数据的到来,如果你接不住大数据那么你在未来的企业市场将会被淘汰。文件(非结构化数据)本身的大小在发生变化,从600MB的RMVB到了30GB的蓝光1080P视频,企...

来源:新华网 2013年4月8日

关键字: 大数据 公有云 Hadoop

  • 评论
  • 分享微博
  • 分享邮件

ZDNet至顶网服务器频道 04月08日 新闻消息: 之前对于大数据只是一个概念,而今已经有很多企业和厂商在开始行动,但目前需要做的是如何迎接大数据的到来,如果你接不住大数据那么你在未来的企业市场将会被淘汰。文件(非结构化数据)本身的大小在发生变化,从600MB的RMVB到了30GB的蓝光1080P视频,企业数据量增加,造成的数据库庞大。这无疑是迫使企业进入大数据时代的原因之一。

我们知道大数据的4v理论,数量(Volume)、多样性(Variety)、速度(Velocity)和真实性(Veracity),为我们制定大数据的策略提供了很好的方向。但同时我们在处理大数据的时候还是面临着很多问题,就目前大数据处理的现状来看,基本上处于以下几种状态。

大数据处理平台以Hadoop为主

目前大数据的处理平台以Hadoop为主,都是自建Hadoop集群或使用AmazonElasticMapReduce服务,而Google的BigQuery由于种种限制推广得并不理想。微软的Cosmos/Dryad/Scope由于体系仅限于内部使用,也不能成为大数据的平台,同时微软对外也支持hostingHadoop。

Hadoop尚难成为公共云服务

为什么说Hadoop很难成为公共云服务呢,原因有以下几个方面,第一Hadoop的安全体系局限在企业内网,缺乏多租户的支持。第二直接暴露HDFS文件系统,MapReduce和Hive很难做到多用户数据安全。第三数据文件格式过于复杂多样,维护成本高,保持数据兼容比较困难。

大数据处理系统的技术门槛很高,从自备发电机到公共电网还有很长的路要走。而市场则需要安全性、可用性、数据正确性都有保障,并且功能完整的一体化大数据处理服务。

大数据处理技术复杂

大数据的处理技术纷繁复杂,仍然处于产业变革早期的战国时代。由于传统的OLAP和数仓的延续性,HiveSQL有很大市场,但Hive的数据正确性和Bug仍然比较多。而HadoopMapReduce又过于复杂灵活,写出高效Job比较困难。Pig、FlumeJava等分布式编程模型技术的门槛较高,所以推广起来也比较困难。在数据挖掘和图算法领域虽然涌现出了Mahout、Hama、GoldenOrb等大量开源平台,但都不够成熟。至于基于Hadoop的工作流系统Oozie和数据传输系统Sqoop都需要开发人员单独部署。都是各有利弊,还没有一个很好的完美的解决方案。

    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章