扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
在本页阅读全文(共3页)
ZDNet至顶网服务器频道 09月09日 : 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。虽然人们对大数据非常熟悉,不过当谈到诸如核心内涵、应用领域等详细问题时,大多数人可能回答得比较模糊。本文整理了一系列和大数据的相关的问题,为大家全方位解读大数据。
1) 大数据时代出现的必然性
大数据和云计算这两个词经常被同时提到,很多人误以为大数据和云计算是同时诞生的、具有强绑定关系。其实这两者之间既有关联性,也有区别。云计 算指的是一种以互联网方式来提供服务的计算模式,而大数据指的是基于多源异构、跨域关联的海量数据分析所产生的决策流程、商业模式、科学范式、生活方式和 关联形态上的颠覆性变化的总和。大数据处理会利用到云计算领域的很多技术,但大数据并非完全依赖于云计算;反过来,云计算之上也并非只有大数据这一种应 用。
云计算的起源可以追溯到 2003 年末 Amazon 公司工程师 Chris Pinkham 提交给 CEO Jeff Bezos 的一篇论文中的一个设想:将 Amazon 内部使用的计算基础设施开放给全世界的开发者。次年 11 月,Amazon 发布了第一版云计算服务:Simple Queue Service。Simple Queue Service 再往后发展至 2006 年,演变成立今天著名的 AWS(Amazon Web Sercice)。同在 2006 年,Google 公司 CEO Eric Schmidt 首次公开提出了“云计算”(Cloud Computing)的这一概念,云计算也在这一年开始变得广为人知。
大数据这个词的流行却晚了好几年——直到 2009 年,大数据这个说法才逐渐开始在互联网圈内传播。但仅仅在互联网领域流行,仍然不足以引起普遍关注,因为纯互联网经济毕竟只占全球经济总量的很小一部分。 而大数据概念真正变得火爆,却是因为美国奥巴马政府在 2012 年高调宣布了其“大数据研究和开发计划”——美国政府希望利用大数据解决一些政府部门面临的非常重要的问题,该计划由横跨 6 个政府部门的 84 个子课题组成。这标志着大数据真正开始进入主流的传统线下经济。
大数据出现的时间点自有它深刻的原因。2009 年至 2012 年这段时间正是电子商务在 包括中国在内的全球全面开花的几年。众所周知,互联网领域有 3 大类商业模式:广告、游戏和电子商务。而电子商务又是第 1 个真正将纯互联网经济与传统经济嫁接在一起诞生的混合模式。准确地说,正是互联网与传统经济的碰撞,才真正催生出了今天几乎全民关注的“大数据”。大数据 横跨了互联网产业与传统产业,而且大数据真正广阔的应用领域其实也正是比纯互联网经济大得多的传统产业。
从数据量的角度来看,在电子商务模式出现以前,传统企业的数量增长缓慢。传统企业的数据仓库中的数据大多数来自于交易型数据,而交易这种行为处 于用户消费决策漏斗的最底部,这就决定了交易前的各种浏览、搜索、比较等用户行为数据的都量远远超过交易数据。电子商务模式使得企业可以采集到用户的浏 览、搜索、比较等行为,这就导致企业的数据规至少提升了一个数量级。现在日益流行的移动互联网以及将来会流行的物联网又必将使数据量提高两三个数量级。从 这个角度来讲,大数据时代是必然会出现的。
从 IT 产业的发展来看,第一代 IT 巨头大多是 2B 的,比如 IBM、Microsoft、Oracle、SAP 这类传统 IT 企业;第二代 IT 巨头大多是 2C 的,比如 Yahoo、Google、Amazon、Facebook 这类互联网企业。一个有意思的现象是:大数据时代前,这两类公司彼此之间基本是井水不犯河水,我们很少看见这两类公司的老板们在一起坐而论道;但在当前这 个大数据时代,这两类公司已经开始直接竞争。比如 Amazon 已经开始提供云模式的数据仓库服务,直接抢占 IBM、Oracle 的市场。这个现象出现的本质原因是:在互联网巨头的带动下,传统 IT 巨头的客户普遍开始从事电子商务业务,正是由于客户进入了互联网,所以传统 IT 巨头们不情愿地被拖入了互联网领域。如果他们不进入互联网,他们业务必将萎缩。所以第三代 IT 巨头可能会是 2B 与 2C 融合的 IT 公司。
2) 大数据的核心内涵
大数据概念虽然非常火爆,但少有人真正理解大数据的核心内容。一个普遍而且严重的误解就是:大数据 = 数据大,即大数据就是量大的数据。事实上,除了数据量大这个字面意义,大数据还有两个更重要的特征:
1) 跨领域数据的交叉融合。相同领域数据量的增加是加法效应,不同领域数据的融合是乘法效应
2) 数据的流动。数据必须流动,流动产生价值
对于第 1) 点,百分点推荐系统研究中心实验结果显示:百分点公司有 3 家客户,分别是从事服装、化妆品和箱包销售的电商,百分点向这 3 家客户提供个性化商品推荐服务,即:百分点挖掘用户的偏好,不同的用户上同一家电商网站时,向他们展现不同的服装、化妆品或箱包,从而提高电商的转化率和 客单价。我们做过两种测试:
a) 将每家网站的数据隔离。当每家网站自身的数据量增加到以前的 4 倍时,推荐效果大约能提高 5%;
b) 将三家网站的数据在去除敏感信息之后进行某种融合。融合后的数据大致是与单家网站的数据的 3 倍,比第一种情况数据量还少。但利用融合后的数据进行数据挖掘时,推荐效果能提升 30%,而且推荐商品并未发生变化,仍然是:用户上服饰类网站时只看见服装、上化妆品网站时只看见化妆品、上箱包网站时只看见箱包。
解释得详细一点,上述实验说明:对同一个消费者,如果我们要向其推荐服装。第一种方法是我们根据他过去的 4 次购买服装的行为来预测其下一次可能会购买的服饰;第二种方法是我们根据他过去分别购买服装、化妆品和箱包的各 1 次行为来预测其下一次可能会购买的服饰。两种方法的基于的用户行数分别是 4 次和 3 次,但第二种方法的效果明显更好。
对于第 2) 点,其实 10 多年前传统企业开始做数据仓库时,数据仓库从业者经常强调一个观点:企业级数据仓库的目标是让不同部门的数据流动起来,各个部门数据割裂,数据的价值就得 不到发挥。到了今天的互联网时代,我们发现即使企业已经打通了内部各个部门之间的数据,但与整个互联网比起来,数据量仍然微乎其微,数据应该以互联网为媒 介在企业之间某种形式的流动。参照“企业级数据仓库”的概念,现在已经开始出现了“互联网数据仓库”的概念:就是企业通过互联网渠道将与自己相关的外部数 据与内部数据进行整合,从而形成“互联网数据仓库”。百分点已经在零售与媒体领域比较成功地打造了“开放数据联盟”,该联盟的成员可以在公允、安全的情况 下基于该联盟建立起自己的“互联网数据仓库”,从而享用海量数据的价值。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者