前面已经介绍过关于DeepStream各种输入源的使用方式,而且Jetson Nano 2GB上开启4路输入(两个摄像头+两个视频文件),都能得到25FPS以上的实时性能,但毕竟“单一检测器(detector)”检测出来的物件是离散型的内容,例如车、人、脚踏车这些各自独立的信息。有没有什么方法能够实现“组合信息”呢?例如“黑色/大众/SUV车”!
DeepStream有一个非常强大的功能,就是多模型组合检测的功能,以一个主(Primary)推理引擎(GIE:GPU Inference Engine)去带着多个次(Secondary)推理引擎,就能实现前面所说的功能。
本实验在Jetson Nano 2GB上,执行4种模型的组合检测功能,能将检测到的车辆再往下区分颜色、厂牌、车种等三个进一步信息,在4路输入视频状态下能得到20+FPS性能,并且我们将显示的信息做中文化处理(如下图)。

在Jetson Nano 2GB上已经安装的DeepStream的范例中,已经预先准备了多个与“车”有关的检测器,可以在/opt/nvidia/deepstream/deepstream/samples/models目录下,看到以下信息:
|
nvidia@nano2g-jp450:/opt/nvidia/deepstream/deepstream/samples/models$ ls -l 总用量 24 drwxrwxrwx 2 root root 4096 7月 13 23:49 Primary_Detector drwxrwxrwx 2 root root 4096 7月 13 22:45 Primary_Detector_Nano drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_CarColor drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_CarMake drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_VehicleTypes drwxrwxrwx 4 root root 4096 2月 8 21:49 Segmentation |
简单说明一下每个目录所代表的的意义:
组成结构也十分简单,其中主(Primary)检测器只有一个,而且必须有一个,否则DeepStream无法进行推理识别。次(Secondary)检测器可以有好几个,这里的范例就是针对“Car”这个类别,再添加“Color”、“Maker”、“Type”这三类元素,就能获取视频图像中物件的更完整信息。
在Jetson Nano的/opt/nvidia/deepstream/deepstream/samples/config/deepstream-app下面的source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt,就已经把这个组合检测器的配置调试好,现在直接执行以下指令:
|
cd /opt/nvidia/deepstream/deepstream/samples/config/deepstream-app deepstream-app -c source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt |
现在看到启动四个视频窗,但是每个视窗的执行性能只有8FPS,总性能大约32FPS,并不是太理想。

接下来看看怎么优化这个配置文件,
修改主检测器[primary-gie]的模型:配置文件中预设的是“Primary_Detector”检测器,这里得修改成专为Nano所训练的版本,这里修改以下几个地方:
因为Jetson Nano(含2GB)并不支持int8计算精度,因此还需要做以下修改:
修改完后重新执行,可以看到每个窗口的检测性能提升到10~12FPS,总性能提升到40~48FPS,比原本提升12~50%,不过距离理想中的25FPS还有很大的差距。
执行过程中如果遇到“There may be a timestamping problem, or this computer is too slow.”这样的信息,就把[sink0]下面的“sync=”设定值改为“0”就可以。
现在看看是否还有什么可调整的空间?参考前一篇文章“DeepStream-04:Jetson Nano摄像头实时性能”所提到的,将[primary-gie]下面的“interval=”设定为“1”,然后再执行应用时,发现每个输入源的识别性能立即提升到20FPS左右(如下图),总性能已经能到80FPS左右,比最初的32FPS提升大约2.5倍,这已经很接近实时识别的性能。

好了,在Jetson Nano 2GB上已经能达到接近实时推理的性能,是相当好的状态。
如果对于显示输出的状态有些不满意的话,我们按照下面的步骤去执行,将“英文”类别名改成“中文”,并且将边框变粗、字体放大,就能更轻松看到推理的效果:
例如deepstream/samples/models/Secondary_CarMake的“labels.txt”内容改为“广汽;奥迪;宝马;雪佛兰;克莱斯勒;道奇;福特;通用;本田;现代;英菲尼迪;吉普;起亚;雷克萨斯;马自达;奔驰;日产;速霸路;丰田;大众”,其他的就比照办理。
注意:这个顺序不能改变!
现在重新执行这个deepstream-app的应用,就能得到本文一开始所显示的效果:

如何?这样的效果与性能就是在Jetson Nano 2GB实现的!【完】
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。