在2019年NVIDIA推出Jetson Nano边缘计算设备之后,这套开源的Jetbot智能无人车教学系统也随之而生,为市场提供一套最优性价比的教学系统,不仅结合时下最先进的深度学习智能识别系统,并且使用最精简的硬件元件,让总体搭建成本锁定在1,500人民币以内,相较于市面上动辄5,000元以上的搭建成本,Jetbot就显得十分亲民。
这个项目最早出现在NVIDIA GTC 2019年会上,现场演示了“避障”、“循路”与“遇障停止”等功能,吸引众多专业人士的眼球,因为Jetbot系统上只使用一个CSI摄像头,而没有其他任何距离传感设备(sensor),便能实现这些复杂的功能,这是相当神奇的一件能力,想先体验Jetbot的功能,可以在网上找到很多关于这个项目的视频,感受一下这套小车的强大。
相较于其他智能小车的,整个Jetbot小车大约只用了8个电子相关器件,以及20个左右的螺丝就能完成安装,如下图所示。其他小车都要使用两倍以上的元器件与螺丝,不仅成本差异非常大,并且组装过程十分繁琐。
此外,Jetbot用Jetson Nano(含2GB)将计算与控制集于一身,传统小车大部分是将这两部分交由两个处理设备来独立负责,主要是因为那些计算设备的性能,不足以顺畅地同时执行计算与控制两个工作,但这样的方式也会增加软件上的复杂度,也会影响系统的运行稳定性。
总的来说,Jetbot智能车学习系统不仅在“成本、易用、稳定”这三方面都有明显的优势,还兼备“智、能、美”三大特色于一身:
在接下去的Jetbot系列文章,就是为大家逐步揭开这个系统的神秘面纱,并引导读者一步一步地完成这个系统的搭建与实验,包括硬件系统组件的细节,以及软件系统的安装、调试与执行,毕竟这样一套作模拟无人车运作的系统,必须每个细节都处理到位,任何一个小地方的疏忽都会影响系统的正常操作。
本文的重点是先为大家剖析一下Jetbot的组成元件列表,并且将这些元件进行分类,这样有助于后面分项细节说明中,可以清楚每个类别所扮演的角色
这是Jetbot系统的核心,用NVIDIA Jetson Nano或2GB版本来担任,二者的机构尺寸与接口位置几乎一致,因此配套的装置是完全通用的。
Jetson Nano(含2GB)透过一组与树梅派兼容的40针扩展引脚,与电子控制设备进行互动,包括传送指令与接收信息,因此Jetson Nano(含2GB)也同时肩负着控制的功能,这样能非常有效地降低设备之间的交互复杂度。
Jetbot只使用一个CSI摄像头,完全模拟人类“视觉感知”的理解方法,用最先进的深度学习“图像分类”技术来识别前方的图像,因此不需要其他声纳、红外线、激光雷达之类的空间距离传感设备,这在现今还是非常独特的做法。
目前Jetson Nano(含2GB)支持IMX219芯片的摄像头,俗称“数梅派2代”摄像头,单价在100人民币左右。
支持M.2 Key-E与USB2/3等接口的无线网卡,前者主要以Intel 8265NGW芯片为主,后者可使用多种双频的USB网卡。
网络设备的重点是要与上位机控制台(例如笔记本)保持连线,除了一开始透过控制台对Jetbot下达指令之外,还有透过前面所提到的CSI摄像头进行数据集采集的任务,以及Jetbot运行是的监控。
这是个树梅派领域使用率很高的设备,因为这些边缘设备并不方便去接显示器,因此需要一个小显示屏来提供一些简单的信息,特别是这个设备目前的IP地址,以及CPU、内存使用率等简单信息。
这个元件如果是自行采购的话,可能需要一些基础焊接的工作,不过这个显示设备并非必要的元件,会在后面的内容中会进一步说明。
这部分由两个部分所组成:
由于Jetbot所使用的电器设备全部都是5V电压,因此可以使用市面上标准的充电宝就可以,不过受到车座所留给放置电源的空间,因此对于充电宝的宽带与高度是有要求的,并且需要两个以上的供电口。
熟悉电源供应的读者,也可以自行制作5V/3A输出的电源方案。
这个在Jetbot小车官网上有提供开源的3D打印文件,读者可以下载后自行打印,或者在淘宝上这方面的服务供应商去打印也可以。
如果自己有3D打印机,技巧好一点的还可以打出如下图的彩色底座。
但我们完成上述所有硬件的组装之后,就能去执行Jetbot所提供的以下4个开源项目以及2个Jetson Community比较有意思的开源项目:
接着就开启我们的Jetbot系列的内容,全程在Jetson Nano 2GB版上操作,带着大家一起轻松地玩转起来这套结构简单、成本亲民的无人车教学系统。[完]
好文章,需要你的鼓励
Cassava Technologies计划投资7.2亿美元与Nvidia合作建设非洲首个AI工厂。该项目将在南非、埃及、尼日利亚、肯尼亚和摩洛哥部署加速计算和AI软件。Cassava旨在确保非洲不落后于AI发展,首批3000个GPU将于6月在南非部署。该项目将为非洲研究人员、初创企业和开发者提供AI基础设施支持。
本文介绍了数据中心资产管理软件的重要性及其主要功能,包括资产识别和容量管理。文章重点分析了五款领先的开源数据中心资产管理工具,如Ralph、NetBox和OpenDCIM等,详细阐述了每款软件的优缺点,为数据中心运营商选择合适的资产管理解决方案提供了参考。
FreeDOS项目发布了1.4版本,这是一个完全开源的DOS兼容操作系统。新版本带来了多项改进,包括新的shell、网络工具和分区工具等。尽管内核未更新,但开发速度正在加快。FreeDOS提供多种下载版本,适用于不同的硬件环境,从现代PC到老式软盘驱动器都能支持。
Google 正在为其云端生产力套件 Workspace 添加新的 AI 功能。新增的 Workspace Flows 工具可自动化多步骤流程,支持与 Gems AI 聊天机器人和第三方应用集成。Google Docs 将支持将草稿转换为播客式概览,并提供内容优化建议。Google Sheets 将新增数据分析功能,Google Meet 可自动记录会议要点。这些升级旨在增强 Workspace 的 AI 能力,提高工作效率。