上一篇文章为大家深入地讲解了videoSource()这个非常强大的输入源处理模块,本文的重点将聚焦在videoOutput()这个输出标的处理模块。
videoOutput()与videoSource()几乎具备一致的特性。这里直接列出了videoOutput()所支持的输出种类与媒体格式:
我们在前面已经熟悉了将结果输出到显示器上的方式,接下来就来体验其他几种输出方式,这对于将来开发边缘应用是非常有帮助的。要知道绝大部分的边缘计算场景,都是不能在设备上直接连上显示器的,那么此时如何观看该设备上所监控到的视频内容呢?通常就是将输入源所获取的数据,做完深度学习推理识别之后的结果,做以下两种处理方式:
至于使用哪种方式,必须根据实际场景而定。而本文的重点就是带着大家,对这两种用法进行试验,并借此学会这些使用方法。
我们还是用10lines.py代码为基础来进行修改,不过为了节省测试时间,这里会将深度学习推理计算的部分省略掉,只保留videoSource()与videoOutput()这两部分的代码。修改后的内容如下:
import jetson.utils input = jetson.utils.videoSource(INPUT) output = jetson.utils.videoOutput(OUTPUT)
while output.IsStreaming(): img = input.Capture() output.Render(img) |
这个6行代码,让人看起来非常轻松,却又支持了绝大部分常用的输入、输出形态与格式。
接下来的重点,就是将代码内的INPUT与OUTPUT做有效的置换,试试以下几种组合状况:
接下来就进行RTP视频流转向的示范步骤:
import jetson.utils input = jetson.utils.videoSource(“/dev/video0”) output = jetson.utils.videoOutput(“rtp://192.168.55.100:1234”)
# import jetson.inference # net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5)
while output.IsStreaming(): img = input.Capture() # detections = net.Detect(img) output.Render(img) |
1 |
|
执行过程中会出现如下截屏的摄像头信息内容:
最后停在下面截屏的地方,发送端到这边就不用再去动这个指令框了。
1 |
|
正确执行指令后,接收端设备的命令行会停留在如下图的状态:
并且还会跳出一个显示框,核对以下显示的内容与Jetson Nano上的摄像头是否一致。
发送端与接收端之间的显示,是否出现时间差?取决于网络的质量!
首先得在接收设备上安装VLC播放软件,然后用文字编辑器生成一个”.sdp”文件,例如”rdp.sdp”,里面的内容如下:
ic=IN IP4 127.0.0.1 m=video 1234 RTP/AVP 96 a=rtpmap:96 H264/90000 |
同样先在发送端执行10lines.py这个代码,然后在接收端用VLC播放器打开rdp.sdp,就可以在VLC播放器上显示了。
这样就能很轻松地将Jetson Nano 2GB上的摄像头看到的画面,直接透过RTP转到PC上去呈现。
这时候,如果你打开Jetson Nano 2GB的jetson-stats监控软件,也会看的左下角“NVDEC”处于执行的状态。
如果我们这时候将“物件检测”的推理识别功能打开的话,会出现怎样的结果呢?先将前面代码中的”#”部分取消,开启对象检测的功能,执行一次看看就知道,是否如下图一样会出现检测的结果。
好的,到这里为止,是不是已经可以更好地掌握videoOutput()的一些用法了呢?
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
时尚零售巨头维多利亚的秘密因安全事件导致网站和线上订单服务中断,已立即启动应急响应、邀请第三方专家协助恢复运营,实体店仍正常营业。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。