上一篇文章为大家深入地讲解了videoSource()这个非常强大的输入源处理模块,本文的重点将聚焦在videoOutput()这个输出标的处理模块。
videoOutput()与videoSource()几乎具备一致的特性。这里直接列出了videoOutput()所支持的输出种类与媒体格式:
我们在前面已经熟悉了将结果输出到显示器上的方式,接下来就来体验其他几种输出方式,这对于将来开发边缘应用是非常有帮助的。要知道绝大部分的边缘计算场景,都是不能在设备上直接连上显示器的,那么此时如何观看该设备上所监控到的视频内容呢?通常就是将输入源所获取的数据,做完深度学习推理识别之后的结果,做以下两种处理方式:
至于使用哪种方式,必须根据实际场景而定。而本文的重点就是带着大家,对这两种用法进行试验,并借此学会这些使用方法。
我们还是用10lines.py代码为基础来进行修改,不过为了节省测试时间,这里会将深度学习推理计算的部分省略掉,只保留videoSource()与videoOutput()这两部分的代码。修改后的内容如下:
import jetson.utils input = jetson.utils.videoSource(INPUT) output = jetson.utils.videoOutput(OUTPUT)
while output.IsStreaming(): img = input.Capture() output.Render(img) |
这个6行代码,让人看起来非常轻松,却又支持了绝大部分常用的输入、输出形态与格式。
接下来的重点,就是将代码内的INPUT与OUTPUT做有效的置换,试试以下几种组合状况:
接下来就进行RTP视频流转向的示范步骤:
import jetson.utils input = jetson.utils.videoSource(“/dev/video0”) output = jetson.utils.videoOutput(“rtp://192.168.55.100:1234”)
# import jetson.inference # net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5)
while output.IsStreaming(): img = input.Capture() # detections = net.Detect(img) output.Render(img) |
1 |
|
执行过程中会出现如下截屏的摄像头信息内容:
最后停在下面截屏的地方,发送端到这边就不用再去动这个指令框了。
1 |
|
正确执行指令后,接收端设备的命令行会停留在如下图的状态:
并且还会跳出一个显示框,核对以下显示的内容与Jetson Nano上的摄像头是否一致。
发送端与接收端之间的显示,是否出现时间差?取决于网络的质量!
首先得在接收设备上安装VLC播放软件,然后用文字编辑器生成一个”.sdp”文件,例如”rdp.sdp”,里面的内容如下:
ic=IN IP4 127.0.0.1 m=video 1234 RTP/AVP 96 a=rtpmap:96 H264/90000 |
同样先在发送端执行10lines.py这个代码,然后在接收端用VLC播放器打开rdp.sdp,就可以在VLC播放器上显示了。
这样就能很轻松地将Jetson Nano 2GB上的摄像头看到的画面,直接透过RTP转到PC上去呈现。
这时候,如果你打开Jetson Nano 2GB的jetson-stats监控软件,也会看的左下角“NVDEC”处于执行的状态。
如果我们这时候将“物件检测”的推理识别功能打开的话,会出现怎样的结果呢?先将前面代码中的”#”部分取消,开启对象检测的功能,执行一次看看就知道,是否如下图一样会出现检测的结果。
好的,到这里为止,是不是已经可以更好地掌握videoOutput()的一些用法了呢?
好文章,需要你的鼓励
LibreOffice 25.8版本以"更智能、更快速、更可靠"为特色正式发布。新版本在多个方面实现性能优化,包括启动速度、文档滚动和文件打开速度的显著提升。该版本增强了对微软Office文档格式的兼容性,改进了连字符处理和字体兼容性,Calc表格组件新增十多个函数以更好支持Excel文件导入。值得注意的是,LibreOffice 25.8首次支持PDF 2.0格式导出,并具备PDF数字加密和签名功能。新版本提高了系统要求,不再支持Windows 7/8系列和32位系统。
谷歌DeepMind团队开发出ViNT视觉导航系统,让机器人像人类一样仅通过"看"就能在陌生环境中导航。该系统模仿ChatGPT的学习方式,通过分析600万个导航轨迹掌握通用导航能力,在未知环境中的成功率达87%。这一突破将推动物流配送、家庭服务、搜救等领域的机器人应用发展。
微软AI首席执行官苏莱曼发文称,研究AI福利和意识"既不成熟又危险",认为这会加剧人类对AI的不健康依赖。而Anthropic、OpenAI等公司正积极研究AI意识问题,招聘相关研究人员。业界对AI是否会产生主观体验及其权利问题分歧严重。前OpenAI员工认为可以同时关注多个问题,善待AI模型成本低且有益。随着AI系统改进,关于AI权利和意识的辩论预计将升温。
谷歌DeepMind推出AlphaFold3,革命性提升分子结构预测能力。该AI模型采用创新扩散网络架构,能够精确预测蛋白质与DNA、RNA、药物等分子的相互作用,准确率比传统方法提高50%以上。这一突破将显著加速新药开发,推动基础科学研究,并通过免费开放服务促进全球科研合作,标志着生命科学研究进入AI驱动的新时代。