第五代至强可扩展处理器的最新MLPerf测试结果充分展示了英特尔及其生态合作伙伴在提升生成式AI性能方面的成果。
近日,MLCommons公布了针对AI推理的MLPerf v4.0基准测试结果。其中,内置了英特尔®高级矩阵扩展(英特尔® AMX)的第五代英特尔®至强®可扩展处理器(以下简称“第五代至强”)在测试中表现优异,进一步彰显了英特尔致力于通过丰富且具有竞争力的解决方案推动 “AI无处不在”的承诺。截至目前,英特尔仍是唯一一家提交MLPerf测试结果的CPU厂商。与第四代至强在MLPerf推理v3.1基准测试中的结果相比,第五代至强的测试结果平均提升1.42倍。
英特尔公司副总裁兼数据中心与人工智能事业部产品管理总经理Zane Ball表示:“我们将持续提升CPU和加速器等广泛产品组合在行业基准测试中的AI性能。此次全新的MLCommons结果显示,我们提供的AI解决方案能够满足客户不断变化、多样化的AI需求。同时,至强处理器也为客户提供了可快速实现AI部署,且极具性价比的选择。”
英特尔产品迄今为止在多轮MLPerf基准测试中均所展示出领先的训练及推理性能,该测试结果亦为客户树立了可用于评估产品AI性能的行业标准。
关于第五代至强的测试结果:
与第四代至强在MLPerf推理v3.1性能基准测试中的表现相比,经由硬件及软件优化的第五代至强性能平均提升1.42倍。其中,针对具备连续批处理(continuous batching)等软件优化的GPT-J模型,与v3.1的测试结果相比,第五代至强的性能提升约1.8倍;同样,得益于MergedEmbeddingBag以及基于英特尔AMX的其他优化,DLRMv2的测试结果显示出约1.8倍的性能提升和99.9的准确率。

第五代英特尔®至强®可扩展处理器
与此同时,英特尔非常自豪地与包括思科、戴尔、广达、Supermicro和纬颖科技在内的广大OEM伙伴们展开合作,助力其提交基于自身产品的MLPerf测试结果。英特尔不仅于2020年开始提交基于第四代至强的测试结果,同时至强可扩展处理器亦是参与MLPerf测试的产品中,众多加速器的主机CPU。
此外,第五代至强可在英特尔®开发者云平台上进行评估。该环境中,用户可以进行小型及大规模AI训练(譬如大语言模型或生成式AI)、运行大规模的推理工作负载,以及管理AI计算资源等。
说明:工作负载及相关配置说明,请查看MLCommons网页。结果可能不同。
好文章,需要你的鼓励
五家光学存储初创公司正在开发长期存储技术,旨在用超过100年寿命的光学介质替代只有5-7年寿命的磁带。这些公司包括Cerabyte、Ewigbyte、HoloMem、Optera和SPhotonix,它们的技术类似微软Project Silica项目。光学存储介质具有更强的化学、冲击、辐射、水和热抗性,同时保持低能耗和高容量特性。
卡内基梅隆大学团队提出DistCA技术,通过分离AI模型中的注意力计算解决长文本训练负载不平衡问题。该技术将计算密集的注意力任务独立调度到专门服务器,配合乒乓执行机制隐藏通信开销,在512个GPU的大规模实验中实现35%的训练加速,为高效长文本AI模型训练提供了新方案。
Nutanix发布分布式主权云产品组合更新,为多云环境提供更安全的运营和管理功能。该解决方案支持企业在分布式环境中灵活部署和治理基础设施,运行传统虚拟机、现代云原生和AI应用。新功能包括支持完全断网环境的暗站点管理、政府云集群正式发布、Kubernetes平台增强安全合规性、企业AI平台集成NVIDIA微服务,以及云平台新增跨站点灾难恢复能力,为用户提供统一管理和运营简化体验。
清华大学研究团队提出3DThinker框架,首次让AI具备类似人类的三维空间想象能力。该系统在推理过程中插入特殊的三维想象符号,不依赖外部工具或大量标注数据,就能从有限的二维图像中构建三维心理模型。在多个空间推理基准测试中,3DThinker相比传统方法性能提升达50-100%,为自动驾驶、机器人导航、虚拟现实等领域的AI应用开辟了新路径。