我们说AI正在重塑各行各业,半导体产业也是,作为“卖铲人”,芯片企业更是火力全开。
美国当地时间4月9日,在Intel Vision 2024大会上,英特尔带来诸多产品更新,其中包括我们熟悉的至强处理器和Gaudi AI加速器。
品牌焕新,英特尔至强6
在数据中心领域,英特尔至强也迎来全新命名,即英特尔至强6。配备能效核(E-cores)的英特尔至强6处理器将于2024年第二季度推出,提供卓越的效率,配备性能核(P-cores)的英特尔至强6处理器将紧随其后推出,带来更高的AI性能。
其实全新至强6不只是品牌焕新那么简单,配备能效核的英特尔至强6处理器(代号为Sierra Forest)与第二代英特尔至强处理器相比,每瓦性能提高2.4倍,机架密度提高2.7倍。
而配备性能核的英特尔至强6处理器(代号为Granite Rapids)包含了对MXFP4数据格式的软件支持,与使用FP16的第四代英特尔至强处理器相比,可将下一个令牌(token)的延迟时间最多缩短6.5倍,能够运行700亿参数的Llama-2模型。
对标NVIDIA,Gaudi 3
Gaudi在英特尔是一个独特的存在。
迭代到Gaudi 3,与上一代产品相比,英特尔Gaudi 3将带来4倍的BF16 AI计算能力提升,以及1.5倍的内存带宽提升。
英特尔Gaudi 3预计可大幅缩短70亿和130亿参数Llama2模型,以及1750亿参数GPT-3模型的训练时间。此外,在Llama 7B、70B和Falcon 180B大语言模型(LLM)的推理吞吐量和能效方面也展现了出色性能。
英特尔Gaudi 3提供开放的、基于社区的软件和行业标准以太网网络,允许企业灵活地从单个节点扩展到拥有数千个节点的集群、超级集群和超大集群,支持大规模的推理、微调和训练。英特尔Gaudi 3将于2024年第二季度面向OEM厂商出货。
AI开放系统战略
在产品更新的同时,英特尔也公布了面向开放的、可扩展的AI系统的战略,其中包括硬件、软件、框架和工具。英特尔让广泛的AI开放生态系统参与者,如设备制造商、数据库提供商、系统集成商、软件和服务提供商等,能够提供满足企业特定生成式AI需求的解决方案。与此同时,亦让企业与他们已知、信任的生态系统合作伙伴展开合作并采取相应解决方案。
英特尔联合Anyscale、Articul8、DataStax、Domino、Hugging Face、KX Systems、MariaDB、MinIO、Qdrant、RedHat、Redis、SAP、VMware、Yellowbrick和Zilliz共同宣布,将创建一个开放平台助力企业推动AI创新。这一凝结全行业力量的计划旨在开发开放的、多供应商的生成式AI系统,通过RAG(检索增强生成)技术,提供一流的部署便利性、性能和价值。RAG可使企业在标准云基础设施上运行的大量现存专有数据源得到开放大语言模型(LLM)功能的增强,加速生成式AI在企业中的应用。
在该计划的初始阶段,基于安全的至强处理器和Gaudi解决方案,英特尔将面向生成式AI进程(pipelines)推出参考实现,发布技术概念框架,并继续增进英特尔Tiber开发者云平台基础设施的功能,以便为RAG及未来进程的生态系统开发和确认打下基础。英特尔鼓励生态系统进一步参与到这一开放平台的创建中来,以促进企业采用该平台,扩大解决方案的应用范围,并取得业务成果。
结语
对于英特尔而言,自身的转变不可避免。全面转向AI已经势不可挡,既有的护城河已经不复存在,新的竞争优势有待建立。已有的产品是历史包袱还是新的起步阶梯,我们拭目以待。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。