现代FGPA(现场可编程门阵列)已不仅仅是工程师可以随意定制的计算应用实时可编程芯片了。现代FPGA已经成了智能的、适应性极强的处理引擎了,这样的处理引擎对于新兴的机器学习和5G无线基础设施市场至关重要,原因是这些领域的发展和创新速度太快了。其他依靠FPGA技术推动创新的市场包括太空和卫星应用,但这两个领域在环境方面的要求则更严苛。Xilinx(赛灵思)今天宣布推出旗下新的20nm耐辐射Kintex UltraScale XQRKU060系列FPGA,该系列可望在诸多太空级应用的下一代设计中找到很好的定位。
尽管多家半导体OEM厂商已经在7nm(纳米)节点上推出了产品,而Xilinx新推出的Kintex UltraScale FPGA则采用了主力20nm工艺技术。20nm工艺听起来像是过气的芯片技术,但在太空方面,20nm工艺实际上是先进技术。太空级半导体芯片需具耐辐射性,必须使用高度可靠且经过验证的芯片制造技术。Xilinx的上一代太空级FPGA建在65nm节点上,新的20nm芯片技术将空间应用大幅推进了三代的工艺节点。简而言之,太空级部件不能够出故障、需要承受冲击、振动和辐射,同时体积要小包装要轻便,而且又要能提供高水平的计算和AI(人工智能)处理能力。 Xilinx表示,“ XQRKU060是业界唯一可以在无限太空轨道里真正的重配置解决方案。而且还能进行实时机载处理和机器学习加速,这些可以令卫星实时更新,能按需提供视频,并执行“及时”计算处理复杂的算法。”
太空级别Xilinx Kintex UltraSCALE耐辐射FPGA (图:Xilinx)
Xilinx 的Kintex XQRKU060在机器学习方面也是一流的,特别是边缘推理加速方面,这里的边缘或许可以说是“外太空”边缘。新型Xilinx XQRKU060可提供5.7 TOPs 尖峰INT8的性能并具有高度可扩展精度,内置密集的可编程逻辑阵列,数字信号处理(DSP)功能比上一代产品提高了10倍,还支持TensorFlow和PyTorch等机器学习开发工具。 Xilinx称,XQRKU060的机器学习吞吐量比上一代XQR5QV系列提高了近25倍。 Xilinx指,“XQRKU060的机器学习功能适用于解决各种问题,包括科学分析、对象检测和图像分类(例如云检测),可以提高处理效率并减少空间和地面决策延迟。”
此外,读者大可以想像得到,能在发射前及发射后在轨道上重新配置的功能很重要,是区分先进FGPA解决方案和普通解决方案的关键,原因是尖端的空间应用程序常常需要顺着各种曲线轨迹飞来飞去。换句话说,人工智能要能够学习、推断、分析,然后做出决定如何重新配置自身或交由工程师决定。这些听起来像是钢铁侠电影里的东西,是不是?
软件工具方面,Xilinx指XQRKU060会得到旗下成熟的Vivado设计套件的支持,Vivado套件同样也支持机器学习行业标准框架。另外,Xilinx旗下人工智能统一软件平台也有计划支持XQRKU060,芯片和生产级加速器板都会支持。
Xilinx指,20nm RT Kintex UltraScale太空级XQRKU060 FPGA(https://www.xilinx.com/products/silicon-devices/fpga/rt-kintex-ultrascale.htm)飞行元件将于今年9月下旬在MIL-PRF-38535规格设备里提供。
好文章,需要你的鼓励
人工智能开发商Anthropic为其旗舰聊天机器人Claude推出新的医疗健康功能,用户现在可以与服务共享医疗记录以更好地了解自己的健康状况。Claude可以连接官方医疗记录和苹果健康等健身应用,进行更个性化的健康对话。新功能现已向美国的Claude Pro和Max订阅用户开放。公司强调该工具不用于诊断或治疗建议,而是帮助用户理解复杂医疗报告,为医患沟通做准备,并承诺严格保护用户隐私数据。
上海AI实验室联合团队开发RoboVIP系统,通过视觉身份提示技术解决机器人训练数据稀缺问题。该系统能生成多视角、时间连贯的机器人操作视频,利用夹爪状态信号精确识别交互物体,构建百万级视觉身份数据库。实验显示,RoboVIP显著提升机器人在复杂环境中的操作成功率,为机器人智能化发展提供重要技术突破。
谷歌发布通用商务协议(UCP)开放商务标准,旨在让AI智能体自动化整个购物流程,从产品发现到支付再到售后服务。该协议与Shopify、Target、沃尔玛等零售商合作开发,支持AI智能体协同处理客户购买流程各环节。谷歌还推出品牌商业智能体和直接优惠工具,优化AI搜索中的购物体验。麦肯锡预测智能体商务到2030年将成长为3万亿美元市场。
英伟达研究团队提出GDPO方法,解决AI多目标训练中的"奖励信号坍缩"问题。该方法通过分别评估各技能再综合考量,避免了传统GRPO方法简单相加导致的信息丢失。在工具调用、数学推理、代码编程三大场景测试中,GDPO均显著优于传统方法,准确率提升最高达6.3%,且训练过程更稳定。该技术已开源并支持主流AI框架。