至顶网计算频道 08月07日 新闻消息(文/董培欣):随着云计算、大数据、人工智能技术的不断发展,具备通用型计算能力的CPU已经越来越难以满足大数据分析和人工智能对计算能力的特列计算性能要求。于是GPU与FPGA等异构计算产品开始在数据中心中出现并逐步占有一席之地。
当前,为了满足云计算数据中心内日益提升的计算、网络和存储性能要求,自适应和智能计算的全球企业赛灵思公司(Xilinx)宣布推出Alveo U50,进一步扩展 其Alveo数据中心加速器卡产品组合。Alveo U50卡是业界首款可以支持第四代PCIe(PCIe Gen 4)的轻量级自适应计算加速卡, 专门为扩容各种不同关键计算、网络和存储工作负载而特别设计,而且所有的加速都在同一个可重配置FPGA平台之上实现。
Alveo U50卡采用赛灵思UltraScale+架构,率先使用半高半长的外形尺寸和低75瓦的低包络功耗。该卡支持高带宽存储器(HBM2),每秒100G网络连接,并支持第四代PCIe和CCIX互联标准。通过支持标准的PCIe服务器插槽和仅相当于现有Alveo卡1/3的功耗, Alveo U50大幅扩展了自适应加速技术可以部署的范围,从而为要求严苛的计算、网络与存储工作负载带来了前所未有的高吞吐量与低延时。8GB HBM2提供了超过400Gbps的数据传输速度, QSFP端口提供了高达100Gbps的网络连接。此外,高速网络I/O还支持各种前沿应用, 如NVMe-oF解决方案(NVM Express over Fabrics),解耦计算存储和专业金融服务应用。
Alveo U50为客户提供了小尺寸、低功耗的可编程加速器平台,专门面向任意服务器部署,本地、云端和边缘的横向扩展架构和特定领域加速而打造。为了应对云微服务等新兴动态工作负载的挑战,Alveo U50在吞吐量,延迟和功效方面实现了10-20倍的改善。 对于加速网络和存储工作负载,U50卡可帮助开发人员通过将计算更接近数据来识别并打破时延和数据移动的瓶颈。
从机器学习推断、视频转码和数据分析到计算存储,再到电子交易和金融风险建模,Alveo U50可以将Alveo平台的灵活性、高吞吐量和低时延等性能优势,扩展到任意服务器的部署中。与固定架构的其他解决方案不同,Alveo U50的软件和硬件可编程性使客户能够在工作负载和算法不断发展的同时,满足不断变化的需求并随时优化应用性能。
赛灵思执行副总裁兼数据中心部总经理Salil Raje先生表示:“对数据中心永无止境的需求,正在将现有数据中心基础设施的性能推向极限,行业需要灵活应变的解决方案来优化广泛应用领域工作负载的性能,以延长现有基础设施的生命周期,并最终降低总拥有成本(TCO)。新款Alveo U50面向数据中心工作负载带来了优化的外形尺寸,以及前所未有的高性能与灵活应变能力,我们将持续与不断扩大的应用合作伙伴生态系统合作,共同构建解决方案堆栈,为众多行业提供此前不可想象的新功能。”
好文章,需要你的鼓励
Atlassian、Intuit和AWS三大企业巨头正在为智能代理时代做准备,重新思考软件构建方式。当前企业API为人类使用而设计,未来API将成为多模型原生接口。Intuit在QuickBooks中应用自动发票生成,使企业平均提前5天收款;AWS通过AI辅助迁移服务显著提升效率;Atlassian推出内部员工入职代理和客户代理,节省大量时间成本。专家强调需要建立强大的数据架构和信任机制。
这项研究首次系统评估了AI代码智能体在科学研究扩展方面的能力。研究团队设计了包含12个真实研究任务的REXBENCH基准,测试了九个先进AI智能体的表现。结果显示,即使最优秀的智能体成功率也仅为25%,远低于实用化要求,揭示了当前AI在处理复杂科学推理任务时的显著局限性。
MIT研究发现,使用生成式AI完成任务时,大脑运作方式与单纯依靠自身思考存在显著差异。研究显示,使用ChatGPT等工具的用户记忆力更差,神经连接活动减少,对所写内容的回忆能力明显下降。虽然AI工具能提高效率,但可能导致用户缺乏对知识的深度理解和掌控感。研究强调需要更多科学数据来了解AI使用对人类认知的长期影响。
俄罗斯莫斯科国立大学研究团队开发出MEMFOF光流估计新方法,在保持顶尖精度的同时将1080p视频分析的GPU内存消耗从8GB降至2GB,实现约4倍内存节省。该方法通过三帧策略、相关性体积优化和高分辨率训练在多个国际基准测试中取得第一名成绩,为高清视频分析技术的普及奠定基础。