扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
作者:CNet 2006年9月18日
关键字: 英特尔
研究人员已经能够将磷化铟(Indium Phosphide)的发光属性和硅的光路由能力整合到单一混合芯片中。当给磷化铟施加电压的时候,光进入硅片的波导(waveguide),产生持续的激光束,这种激光束可驱动其他的硅光子器件。这种基于硅片的激光技术可使光子学更广泛地应用于计算机中,因为采用大规模硅基制造技术能够大幅度降低成本。
“这一技术使未来的计算机内部可采用低成本、万亿比特(TB)量级的光学‘数据通路’(data pipes),并使高性能计算应用迎来新时代,”英特尔公司光子学技术实验室总监马里奥·潘尼西亚(Mario Paniccia)指出。“尽管离商品化仍有很长距离,但我们相信数十个、甚至数百个混合硅激光器会和其它硅光子学部件一起,被集成到单一硅基芯片上去。”
“我们和英特尔公司的研究项目,充分体现了产业和学术界可以通过合作来推动科学技术的发展,”美国加州大学圣芭芭拉分校电气和计算机工程学教授约翰·鲍尔斯(John Bowers)指出,“通过结合美国加州大学圣芭芭拉分校在磷化铟方面的专业能力和英特尔公司在硅光子方面的专业能力,我们已研发出基于键合方法的一种新结构激光器,它能够用于晶圆级、半晶圆级和芯片级的应用,同时这也是将大规模的光学器件集成到一个硅平台上的一种可能的解决方案。这是开始低成本大批量生产高集成度硅光子芯片的标志。”
硅被广泛用于数码电子产品的大批量生产,也用于光的路由、探测、调制和放大,但它并不能有效发光。另一方面,基于磷化铟的激光器被普遍用于电信设备,但需要逐一进行组合和校准。这相对于计算机产业大批量、低成本的制造需求,仍显得过于昂贵和费时。
混合硅激光含有独特设计,当硅波导容纳和控制激光时,其采用的磷化铟材料可以产生光并把它扩大。制造这种设备的关键是用低温的氧等离子体(带电荷的氧气)在这两种材料表面都形成一层薄氧化膜(大约25个原子的厚度)。
当加热的同时在材料两侧加压,两种材料上的氧化膜就像玻璃粘合剂一样熔合,从而将两种材料熔合到一个单一芯片中。给磷化铟施加电压,它产生的光会通过这层像玻璃粘合剂一样的氧化膜进入硅片中的波导。波导容纳并控制光,形成混合硅激光。波导的设计对混合硅激光器的性能和激光的波长至关重要。欲知混合硅激光器的更多信息,请访问http://www.intel.com/research/platform/sp/hybridlaser.htm。
今天的发布,建立在英特尔公司另一个长期研究项目的成就之上,即采用标准硅制造工艺来“硅化(siliconize)”光子学器件。2004年,英特尔研究人员首次展示了带宽超过1GHz的硅激光调制器,比此前硅基调制记录快了近50倍。2005年,英特尔公司研究人员首次演示了硅可用来放大外部光源、利用拉曼效应(Raman effect)产生连续的片上激光(laser-on-a-chip)光波。
鲍尔斯教授研究硅光子学材料和激光已超过25年。目前他专注于研发数据传输速率达160Gb/秒的新式光电子设备,以及键合不同材料来创造更高性能的新设备的技术。(责任编辑:袁斌)
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者