至顶网服务器频道 11月15日 新闻消息: 如果没有机器的协助,海量、复杂的数据将越来越难以利用。机器不仅处理数据,并且从中学习。
日前,我在《纽约时报》Dealbook大会上谈到,每家公司都应当制定人工智能战略,刻不容缓。随着数字化革命进程的加快,数据越来越多、越来越复杂、越来越多样,企业必须迅速做出关键决策。为了驾驭数字洪流,企业需要人工智能战略,否则就会落后于时代。
海量、复杂的可用数据量超过了人类分析师处理的能力。如果没有机器的协助,就日益难以有效利用数据,而机器不仅处理数据,并且从中学习。
人工智能使企业能够管理复杂的数据,并且提供前所未有的机会以让企业做出实时决策、动态运营管理并响应客户。
这并不是在预测未来。从银行到医疗,从制造业到消费服务业,全球的企业都在利用人工智能分析数据并构建学习型组织,从而以前所未有的速度来应变并展开竞争。例如:
• 新西兰银行提出了一个新的品牌主张--"您的银行",更加聚焦在顾客身上,实现途径之一是利用人工智能重塑和再造一种更加个性化的顾客体验。
• 夏普医疗正在利用人工智能来筛查患者多年的电子病历数据,以预测哪些患者面临病情突然恶化的风险,准确率达到80%。这一模式可以预测在接下来一个小时是否需要调用快速响应团队(Rapid Response Team),从而让夏普能够智能地把医疗急救队伍配备到医院中的关键位置,在危及生命的事件发生之前就进行干预。
• 费洛实验室(Fero Labs)正在利用人工智能帮助制造商提高工业产量、预防昂贵的机器发生故障以减少浪费,所有这一切都有助于提高产品质量并降低成本。
亚马逊云服务(AWS)正在为客户提供机器学习服务,帮助他们开发智能应用。它让Zillow这样的机构能够高度准确地估算超过1.1亿套房屋的价值,也能让Netflix为其1亿订户制定个性化的预测推荐。
企业正在利用人工智能平台进行激动人心的创新,这只是其中的几个案例。企业要想运用人工智能致胜未来,就应遵循四个关键指南:
• 知道哪些数据被抓取了, 利用最新互联技术哪些数据还可以被抓去
• 部署基础设施,以整合数据并知道如何分析这些数据
• 确定在哪方面投资人工智能以助于从数据中进行学习
人工智能支持并协助实时决策的世界即将到来,培训高管使其做好准备
在英特尔,我们致力于让人工智能成为我们产品组合的重要组成部分。能够解决我们内部业务挑战的技术,同样也可帮到我们的客户。人工智能优化解决方案的案例包括:工厂流程、战略规划、IT数据中心运营等。应用案例不胜枚举,正因如此,英特尔投资将人工智能视为选择投资项目的重要战略标准之一。
为此,英特尔提供了一整套人工智能产品,包括软件和硬件,可以应用到几乎每种可以想到的案例中。通过在各业务场景中提供灵活、可扩展的解决方案,我们引领着人工智能与业务运营的整合。最具前瞻性的公司正已通过人工智能获得竞争优势。展望未来,人工智能战略将不再可有可无,它将成为企业生存的条件。
企业需要立刻制定并执行自己的人工智能战略,方能制胜未来。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。