机密计算是一种在处理过程中对数据进行加密的技术,即使在使用过程中也能确保敏感信息的安全,因而迅速流行起来。机密计算将数据隔离在可信执行环境中,这样可以防止未经授权的访问,并为云和多租户环境中的敏感工作负载提供增强的隐私和安全性。由于机密计算弥补了传统加密方法的短板,这种方法在医疗保健和金融等处理关键数据的行业中越来越受欢迎。
正如英特尔在一篇博文中指出的那样,需要组合多个私有数据集的组织可以使用机密计算来执行联合分析或提供机密人工智能服务,这样做不会暴露任何人的私人数据。该功能已用于银行欺诈检测和集体医学研究等领域。
Google Cloud 的新C3实例为Intel Trust Domain Extensions支持的敏感工作负载或受监管数据提供基于硬件的隐私保护和机密性。英特尔TDX是一种基于硬件的技术,通过创建隔离的执行环境来增强数据隐私和安全性,保护敏感工作负载免受未经授权的访问——即使在共享云基础设施中也是如此。使用谷歌云的应用程序可以看到虚拟机中的软件和数据,这些软件和数据与其他云租户中运行的软件以及谷歌的云堆栈、虚拟机管理程序和系统管理员隔离。
英特尔的Xeon可扩展处理器提供对虚拟机的“信任边界”的控制,以及对虚拟机内存的加密(由处理器内部的硬件进一步强制执行)。最终结果是工作负载保持私有,而采用英特尔TDX的机密计算使敏感数据和代码保持私有并且更安全,即使在公共云中也是如此。
Intel Google Cloud Confidential Computing 解决方案还提供可信执行环境的远程认证。该认证为数据相关方提供加密证据,证明其机密虚拟机是真实的,在策略范围内保持更新,并使用经过身份验证的固件启动,从而确保虚拟机正常运行。
客户还可以选择使用 Intel Trust Authority 来认证基于英特尔芯片的机密虚拟机。Intel Trust Authority独立于谷歌云,提供机密虚拟机完整性的独立评估。
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。