虽然Arm架构在服务器领域异军突起,但x86仍然“非常重要”
在本周于Computex 2022大会上亮相的参考服务器系统当中,我们看到了英伟达Grace CPU与Hooper Superchips的身影,据悉两款芯片都将于明年年初与服务器产品一同出货。

希望这些Arm兼容型HGX设计方案能够顺利落地,为英伟达宣传称“总值达5000亿美元”的机器学习、数字孪生模拟和云游戏应用等业务提供动力。
英伟达产品管理与营销高级总监Paresh Kharya在新闻发布会上表示,“这种转变要求我们从各个层面重新构想数据中心,包括硬件、软件、芯片、基础设施乃至整体系统。”
全部四种参考系统均将由今年英伟达春季GTC大会上公布的Arm兼容型Grace CPU和Grace-Hopper Superchips提供支持。
其中Grace Superchip是将两块Grace CPU裸片通过900 GB/秒NVLink-C2C互连技术接入同一基板,由此提供144个CPU核心和1 TB/秒内存带宽,总功率为500瓦。Grace-Hopper则将其中一个CPU芯片替换成H100 GPU芯片,同样经由NVLink-C2C实现与CPU直接连通。
HGX家族的这些最新产品,无疑是英伟达为专注于计算密度的大型HPC部署需求的直接回应。其中一套参考设计,即2U HGX Grace-Hopper刀片节点,使用的就是512 GB LPDDR5x DRAM加80 GB HBM3内存、再加Grace-Hopper Superchip的强劲组合。
对于未针对GPU加速做出优化的计算工作负载,英伟达还提供1U GHX Grace刀片服务器。它是将Grace-Hopper Superchip替换成了拥有1 TB LPDDR5x内存的纯CPU模块。用户可以在单一机架内接入两个HGX Grace-Hopper或者四个HGX Grace节点。
Kharya表示,“通过这些HGX参考系统,英伟达还将为OEM制造商提供Grace-Hopper和Grace CPU Superchip模块,以及相应的PCB参考设计。”
英伟达的六家合作伙伴供应商——华硕、富士康、技嘉、QCT、Supermicro和纬颖——都有计划根据参考系统设计自家产品,首批出货预计在明年年初。
除了HGX,英伟达还分别推出了面向云游戏和数字孪生模拟的CGX和OVX两款新型参考设计。
这两种设计均使用Grace Superchip CPU配合多种基于PCIe接口的GPU,其中也包括英伟达的A16。
四套系统的网络均由英伟达BlueField-3负责提供,而且据我们得到的消息,英伟达还计划为基于Grace-Hopper的系统提供NVLink连接,借此建立起跨节点GPU内存池。
不过面对英伟达计划于明年初商业发布的这些高端Arm CPU,Kharya仍然强调并不打算在短期内彻底放弃x86。
他解释道,“x86是一类非常重要的CPU,几乎占据着当前英伟达GPU产品所处的全部市场空间。我们将继续同步支持x86和基于Arm架构的CPU,为客户乃至市场提供适合一切使用场景的加速计算选项。”
除了以HPC为重点的参考设计方案之外,英伟达还提到,有30多家合作伙伴供应商已经在边缘和嵌入式应用(包括AI推理)系统中广泛部署了其低功耗Jetson AGX Orin平台。
同样发布于今年春季GTC大会的60瓦版Jetson Orin AGX开发套件,是一款基于英伟达Ampere系列GPU、拥有12个Cortex-A67AE核心的Arm CPU单片计算机。
英伟达边缘、AI与机器人业务部门产品管理总监Amit Goel在本周的新闻发布会上提到,“我们看到,在零售、农业、制造业、智慧城市、物流和医疗保健等大规模行业当中,机器人技术与边缘AI用例的发展势头都相当强劲。出于延迟、带宽或数据主权等考量,这些应用都只能运行在边缘位置。而英伟达Jetson已经成为这些应用场景的首选平台。”
为了满足对于Jetson平台不断增长的市场需求,英伟达还公布了四次设计迭代,包括即将于今年7月和10月分别推出的8核32 GB与12核64 GB版本AGX Orin平台。英伟达还计划在9月和12月推出较为轻量化的Orin NX平台8 GB和16 GB版本。其中Orin NX平台继续沿用上代方案的SODIMM内存式边缘连接器。
英伟达宣称,目前已经有超过100万开发者、6000家公司和150家合作伙伴正基于这款低功耗AI边缘平台开发自家产品。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。