这些合作基于英伟达的“人工智能工厂”概念,即把原始数据转化为可操作的人工智能模型或“tokens”的数据中心,这些模型或“tokens”可作为各种应用的智能工具。
这些联盟还旨在开发能力更强的代理,即具有决策能力的自主行动数字机器人,这些机器人通常以目标或目的为指导。代理系统可以规划、推理和执行多步骤的任务,适应不断变化的环境和背景,超越回答问题,发起行动。
英伟达表示,人工智能代理现在可以自动处理临床文件,帮助病人寻找治疗,甚至在自然灾害等紧急情况下协调医院的运作。
数以千计的代理
英伟达的医疗保健副总裁 Kimberly Powell表示:“仅在我们的启动计划中,就有超过1000 家数字医疗保健初创企业正在开发数千个人工智能代理。”她以临床对话式生成人工智能平台Abridge为例,该平台使用代理自动处理临床文档,每天可为医生节省多达三小时的文书工作。
Iqvia Holdings是一家为生命科学行业提供先进分析、技术和临床研究服务的供应商,英伟达与该公司合作,简化药物和医疗器械开发。Powell表示,Iqvia的64 PB专有匿名数据集将被英伟达最近发布的Llama Nemotron大型语言模型训练定制模型,“通过人工智能代理推动更高效的临床试验和工作流程转型。”
与梅奥诊所(Mayo Clinic)的合作旨在共同开发新一代病理模型。梅奥诊所将利用英伟达的DGX Blackwell系统和人工智能工具训练超过2000万张数字病理图像,以创建“数字孪生”,即物理实体的计算机化复制品,用于个性化医疗保健。
与生物技术公司Illumina的合作旨在通过将Illumina的测序技术与英伟达的人工智能工具结合,从基因组学数据中获得洞察力。英伟达表示,双方的合作将使基因组学研究民主化,并扩大其在药物发现领域的应用。
Powell表示:“我们将为基因组学开辟新的市场,让人们不仅能获得数据,还能更深入地了解基因组学,推动疾病研究和药物发现取得重大进展。”
英伟达还与非营利性医学研究机构Arc Institute合作,利用英伟达的BioNeMo 自然语言处理框架(如图)为生物学和临床研究创建开源生物基础模型。Powell表示,这样做的目的是促进对DNA、RNA和蛋白质结构的理解,从而推动生物医学研究。
她表示:“我们的合作将专注于利用BioNeMo和DGX云开发真正的生物学基础模型,并将成果贡献回BioNeMo的开源中。”DGX Cloud是一种基于云的人工智能超级计算服务。
大会上还将首次发布名为GenMol的BioNeMo新版本,这是一个用于虚拟筛选的目标导向分子生成NeMo推理微服务。英伟达还将发布蛋白质设计蓝图(Blueprints for Protein Design),这是开发基于蛋白质的疗法的参考工作流。
Powell表示:“数以万计的生命科学公司、研究机构和平台公司现在可以将BioNeMo与传统的实验室工作整合在一起,创建一个人工智能药物发现工厂,业界称之为‘干实验室’。”“我们正在看到的是从湿实验室发现过程向人工智能工厂、干实验室和移动药物发现的转变。”
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。