随着十四五规划的落地、“东数西算”工程正式全面启动,推动数字化转型向纵深迈进。如何有效地管理海量多样的数据类型,实现资源共享,进一步发掘数据价值,高效支撑多样化应用,成为存储系统亟待解决的问题。3月23日,曙光就以上问题在京举行技术研讨,与行业资深专家共探存储新发展。
分布式统一存储
应对海量数据多样化应用需求
“面对海量爆发的数据,传统集中式存储已经不是最优选了,现在更多是采用分布式存储解决这个难题。”在海量数据多样化应用需求面前,中科曙光存储事业部副总经理张新凤给出了解决方案。
据悉,相较于传统存储,横向扩展的分布式存储具备扩展性强、容量大、数据安全性高等特点,可轻松应对海量数据的管理需求。而近10年来,曙光一直致力于海量数据存储与处理技术的研发,面对数字化转型的挑战,曙光分布式统一存储系统ParaStor,可应对“5G+AI+云”时代下的海量数据多样化应用需求。
曙光ParaStor集结多项优势
激发数据潜在价值
张新凤介绍,去年底,曙光ParaStor融合了文件、对象、块、HDFS多种协议,真正实现了海量异构数据资源的融合,高效助力企业的数字化转型,可广泛应用于高端计算、通信、自动驾驶、EDA、能源勘探等多个领域,全面挖掘数据的潜在价值。

曙光ParaStor单一存储节点同时支持文件、块、对象、HDFS四种存储服务,3节点存储集群即可承载非结构化与结构化数据业务,消除存储设备多样性及管理复杂性,降低存储系统的构建成本;为了满足对象应用,曙光ParaStor对IO协议栈进行极简优化,实现了单桶千亿KB级小对象的存储能力,存储集群百万级TPS吞吐性能可达到业内领先水平;同时,曙光ParaStor提供原生HDFS接口,无任何协议损耗,无缝接入大数据平台,实现存储与计算资源按需配置的同时,满足新老存储同时读写,应用“0”改造,数据“0”迁移,构建更佳的高性价比大数据存算分离解决方案。
值得一提的是,基于自研优势,曙光可根据不同行业用户的不同需求,进行代码级的定制化设计与开发,产品功能和性能指标可大大优于同类产品。同时,多年来超大规模项目的部署经验与应用的支持,让曙光ParaStor的可靠性和稳定性得到了充分的市场检验。
“存储市场是需要很深技术积累和很大资金投入的市场,所以很早预估到行业的发展趋势,进行自主研发产品的企业一定会跟未来的趋势高度结合”赛迪顾问业务总监高丹表示。作为国内第一批做自研分布式存储的厂商,曙光将不断进行自我革新,根据市场趋势进行产品和系统的迭代升级,开发更多场景应用,切实推进企业的数字化转型。
曙光技术圆桌派精彩回顾:https://live.vhall.com/v3/lives/watch/556380469
好文章,需要你的鼓励
虽然在CES 2026展会上需要仔细寻找才能发现Linux的身影,但它确实无处不在。Canonical展示了与英伟达合作的Ubuntu Linux桌面超级计算机,配备GB10芯片、128GB内存和4TB存储。公司还演示了Ubuntu Core在IoT设备中的应用,以及为应对欧盟网络韧性法案推出的Ubuntu Pro设备支持方案。此外,Linux正成为软件定义汽车、边缘AI和智能电视的默认平台。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
智能白板制造商Vibe发布桌面AI设备Vibe Bot,集成语音助手、智能摄像头和AI笔记功能。该设备采用圆柱形设计,配备4K摄像头、波束成形麦克风和可旋转屏幕,能够跟踪发言者并自动调整视角。支持在线和离线会议录音,提供实时转录和AI生成的会议纪要,用户可通过语音助手查询会议信息并触发日历等应用操作。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。