随着十四五规划的落地、“东数西算”工程正式全面启动,推动数字化转型向纵深迈进。如何有效地管理海量多样的数据类型,实现资源共享,进一步发掘数据价值,高效支撑多样化应用,成为存储系统亟待解决的问题。3月23日,曙光就以上问题在京举行技术研讨,与行业资深专家共探存储新发展。
分布式统一存储
应对海量数据多样化应用需求
“面对海量爆发的数据,传统集中式存储已经不是最优选了,现在更多是采用分布式存储解决这个难题。”在海量数据多样化应用需求面前,中科曙光存储事业部副总经理张新凤给出了解决方案。
据悉,相较于传统存储,横向扩展的分布式存储具备扩展性强、容量大、数据安全性高等特点,可轻松应对海量数据的管理需求。而近10年来,曙光一直致力于海量数据存储与处理技术的研发,面对数字化转型的挑战,曙光分布式统一存储系统ParaStor,可应对“5G+AI+云”时代下的海量数据多样化应用需求。
曙光ParaStor集结多项优势
激发数据潜在价值
张新凤介绍,去年底,曙光ParaStor融合了文件、对象、块、HDFS多种协议,真正实现了海量异构数据资源的融合,高效助力企业的数字化转型,可广泛应用于高端计算、通信、自动驾驶、EDA、能源勘探等多个领域,全面挖掘数据的潜在价值。

曙光ParaStor单一存储节点同时支持文件、块、对象、HDFS四种存储服务,3节点存储集群即可承载非结构化与结构化数据业务,消除存储设备多样性及管理复杂性,降低存储系统的构建成本;为了满足对象应用,曙光ParaStor对IO协议栈进行极简优化,实现了单桶千亿KB级小对象的存储能力,存储集群百万级TPS吞吐性能可达到业内领先水平;同时,曙光ParaStor提供原生HDFS接口,无任何协议损耗,无缝接入大数据平台,实现存储与计算资源按需配置的同时,满足新老存储同时读写,应用“0”改造,数据“0”迁移,构建更佳的高性价比大数据存算分离解决方案。
值得一提的是,基于自研优势,曙光可根据不同行业用户的不同需求,进行代码级的定制化设计与开发,产品功能和性能指标可大大优于同类产品。同时,多年来超大规模项目的部署经验与应用的支持,让曙光ParaStor的可靠性和稳定性得到了充分的市场检验。
“存储市场是需要很深技术积累和很大资金投入的市场,所以很早预估到行业的发展趋势,进行自主研发产品的企业一定会跟未来的趋势高度结合”赛迪顾问业务总监高丹表示。作为国内第一批做自研分布式存储的厂商,曙光将不断进行自我革新,根据市场趋势进行产品和系统的迭代升级,开发更多场景应用,切实推进企业的数字化转型。
曙光技术圆桌派精彩回顾:https://live.vhall.com/v3/lives/watch/556380469
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。