2019年7月3日,北京——在今天举行的百度AI开发者大会上,英特尔公司副总裁兼人工智能产品事业部总经理Naveen Rao宣布,英特尔正与百度合作开发英特尔Nervana神经网络训练处理器(NNP-T)。这一合作包括全新定制化加速器,以实现极速训练深度学习模型的目的。

Naveen Rao表示:“未来几年,AI模型的复杂性以及对大规模深度学习计算的需求将爆发式增长。英特尔和百度将延续双方十多年的合作并聚焦于联合设计和开发全新的硬件以及配套软件,从而向 ‘AI 2.0’的新疆界不断迈进。”
AI并非单一的工作负载,而是一种广泛的、能够强化所有应用性能的强大能力,无论这些应用是运行在手机上还是大规模数据中心内。然而,手机、数据中心以及两者间的所有设施都对性能和功耗有着不同的要求,因此单一的AI硬件无法满足一切需求。英特尔在人工智能方面提供优越的硬件选择,并通过软件来最大化释放硬件的性能,从而帮助客户无论数据多么复杂或位于哪里都可以自如运行AI应用。此次NNP-T是一类全新开发的高效深度学习系统硬件, 能够加速大规模的分散训练。与百度的密切合作能够确保英特尔开发部门始终紧跟客户对训练硬件的最新需求。
从2016年起,英特尔便一直针对英特尔至强可扩展处理器优化百度飞桨(PaddlePaddle)深度学习框架。如今,通过为百度飞桨优化NNP-T,双方能够为数据科学家提供更多的硬件选择。
与此同时,英特尔还通过更多技术来进一步增强这些AI解决方案的性能。例如,凭借英特尔傲腾数据中心级持久内存所提供的更高内存性能,百度能够通过其Feed Stream(信息流)服务向数百万用户提供个性化移动内容,并通过百度AI推荐引擎获得更高效的客户体验。
此外,鉴于数据安全对于用户极其重要,英特尔还与百度共同致力于打造基于英特尔软件保护扩展(SGX)技术的MesaTEE——内存安全功能即服务(FaaS)计算框架。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。