2019年7月3日,北京——在今天举行的百度AI开发者大会上,英特尔公司副总裁兼人工智能产品事业部总经理Naveen Rao宣布,英特尔正与百度合作开发英特尔Nervana神经网络训练处理器(NNP-T)。这一合作包括全新定制化加速器,以实现极速训练深度学习模型的目的。

Naveen Rao表示:“未来几年,AI模型的复杂性以及对大规模深度学习计算的需求将爆发式增长。英特尔和百度将延续双方十多年的合作并聚焦于联合设计和开发全新的硬件以及配套软件,从而向 ‘AI 2.0’的新疆界不断迈进。”
AI并非单一的工作负载,而是一种广泛的、能够强化所有应用性能的强大能力,无论这些应用是运行在手机上还是大规模数据中心内。然而,手机、数据中心以及两者间的所有设施都对性能和功耗有着不同的要求,因此单一的AI硬件无法满足一切需求。英特尔在人工智能方面提供优越的硬件选择,并通过软件来最大化释放硬件的性能,从而帮助客户无论数据多么复杂或位于哪里都可以自如运行AI应用。此次NNP-T是一类全新开发的高效深度学习系统硬件, 能够加速大规模的分散训练。与百度的密切合作能够确保英特尔开发部门始终紧跟客户对训练硬件的最新需求。
从2016年起,英特尔便一直针对英特尔至强可扩展处理器优化百度飞桨(PaddlePaddle)深度学习框架。如今,通过为百度飞桨优化NNP-T,双方能够为数据科学家提供更多的硬件选择。
与此同时,英特尔还通过更多技术来进一步增强这些AI解决方案的性能。例如,凭借英特尔傲腾数据中心级持久内存所提供的更高内存性能,百度能够通过其Feed Stream(信息流)服务向数百万用户提供个性化移动内容,并通过百度AI推荐引擎获得更高效的客户体验。
此外,鉴于数据安全对于用户极其重要,英特尔还与百度共同致力于打造基于英特尔软件保护扩展(SGX)技术的MesaTEE——内存安全功能即服务(FaaS)计算框架。
好文章,需要你的鼓励
随着5G流量快速增长和新用例不断涌现,网络运营商需要在最小化环境影响的同时管理密集网络使用。Orange法国与爱立信合作开展创新试验,测试FDD大规模MIMO天线集成无线电,优化高流量区域频谱使用。双方还探索Cloud RAN和Open RAN架构,通过虚拟化RAN功能实现灵活的软件中心网络。合作重点关注利用AI驱动的自动化和意图驱动技术提升能源效率,在不影响性能的前提下动态调整网络资源以降低能耗。
谷歌DeepMind等顶级机构联合研究揭示,当前12种主流AI安全防护系统在面对专业自适应攻击时几乎全部失效,成功率超过90%。研究团队通过强化学习、搜索算法和人类红队攻击等多种方法,系统性地突破了包括提示工程、对抗训练、输入过滤和秘密检测在内的各类防护技术,暴露了AI安全评估的根本缺陷。
微软正在将Windows 11改造为"智能代理操作系统",在任务栏中集成AI代理功能。新功能允许AI代理在后台执行任务,用户可通过任务栏图标查看进度状态。微软还在文件资源管理器中集成Copilot,提供文档摘要、文件问答等功能。此外,Click to Do功能得到改进,可将网页表格转换为Excel文档。这些AI功能采用本地AI和云端AI混合模式,为用户提供更智能的操作体验。
西蒙弗雷泽大学和Adobe研究院联合开发的MultiCOIN技术,能够将两张静态图片转换为高质量的过渡视频。该技术支持轨迹、深度、文本和区域四种控制方式,可单独或组合使用。采用双分支架构和分阶段训练策略,在运动控制精度上比现有技术提升53%以上,为视频制作提供了前所未有的灵活性和精确度。