2019年7月3日,北京——在今天举行的百度AI开发者大会上,英特尔公司副总裁兼人工智能产品事业部总经理Naveen Rao宣布,英特尔正与百度合作开发英特尔Nervana神经网络训练处理器(NNP-T)。这一合作包括全新定制化加速器,以实现极速训练深度学习模型的目的。
Naveen Rao表示:“未来几年,AI模型的复杂性以及对大规模深度学习计算的需求将爆发式增长。英特尔和百度将延续双方十多年的合作并聚焦于联合设计和开发全新的硬件以及配套软件,从而向 ‘AI 2.0’的新疆界不断迈进。”
AI并非单一的工作负载,而是一种广泛的、能够强化所有应用性能的强大能力,无论这些应用是运行在手机上还是大规模数据中心内。然而,手机、数据中心以及两者间的所有设施都对性能和功耗有着不同的要求,因此单一的AI硬件无法满足一切需求。英特尔在人工智能方面提供优越的硬件选择,并通过软件来最大化释放硬件的性能,从而帮助客户无论数据多么复杂或位于哪里都可以自如运行AI应用。此次NNP-T是一类全新开发的高效深度学习系统硬件, 能够加速大规模的分散训练。与百度的密切合作能够确保英特尔开发部门始终紧跟客户对训练硬件的最新需求。
从2016年起,英特尔便一直针对英特尔至强可扩展处理器优化百度飞桨(PaddlePaddle)深度学习框架。如今,通过为百度飞桨优化NNP-T,双方能够为数据科学家提供更多的硬件选择。
与此同时,英特尔还通过更多技术来进一步增强这些AI解决方案的性能。例如,凭借英特尔傲腾数据中心级持久内存所提供的更高内存性能,百度能够通过其Feed Stream(信息流)服务向数百万用户提供个性化移动内容,并通过百度AI推荐引擎获得更高效的客户体验。
此外,鉴于数据安全对于用户极其重要,英特尔还与百度共同致力于打造基于英特尔软件保护扩展(SGX)技术的MesaTEE——内存安全功能即服务(FaaS)计算框架。
好文章,需要你的鼓励
调查显示,大多数 CIO 担忧 AI 成本管理限制了其价值实现。为此,一些公司正考虑出售非核心业务来为 AI 项目融资。这种趋势在 IT 行业尤为明显,因为它们需要大量资金来构建 AI 基础设施。然而,这种做法也存在风险,如果 AI 项目无法产生收入,可能会导致投资回报率降低。
微软和谷歌为其生产力套件中的人工智能功能推出新定价策略,旨在提高企业用户对AI工具的采用率。微软推出免费版Copilot Chat,允许用户创建AI代理;谷歌则将Gemini完整功能集成到Workspace商业版和企业版中,每用户每月增加2美元。这些变化反映了两家科技巨头在AI生产力工具市场的激烈竞争。
本文探讨了企业在采用生成式AI时快速与谨慎两种策略的利弊。尽管早期AI项目失败率高,但一些先行者通过多次尝试已获得显著收益。文章分析了自建与购买的选择,以及如何平衡创新与风险,强调了在AI领域保持学习和实验精神的重要性。
Informatica 加强了其智能数据管理云平台与 Databricks 数据智能平台的集成,支持 AI 功能。这一合作旨在提升数据质量、简化数据处理流程,并为企业级生成式 AI 应用提供支持。两家公司的合作将为客户带来更强大的数据管理和 AI 能力,推动数据驱动的创新。