本周一在美国拉斯维加斯开幕的CES消费电子展上,英特尔展示了自己首款采用10纳米工艺的处理器。
这款代号“Ice Lake”的处理器主要面向个人电脑,基于英特尔最近推出的Sunny Cove位架构,该架构采用了旨在推动利用人工智能和英特尔Gen 11 GPU的指令集。
Sunny Cove提高了英特尔芯片的时钟性能和能效,适用于日常计算,此外还增加了支持人工智能和加密相关工作负载的新功能。
具体来说,Sunny Cove让CPU能够并行执行更多操作,通过改进算法降低延迟,并提供更大的缓冲区和缓存来优化以数据为中心的工作负载,英特尔客户端计算群组高级副总裁Gregory Bryant这样表示。
今年晚些时候出货第一批设备的时候,Ice Lake芯片还将配置面向PC和笔记本电脑的Thunderbolt 3、Wi-Fi 6和Deep Learning功能。
Ice Lake对英特尔来说是一个重要的里程碑。目前英特尔已经落后于AMD等竞争对手,后者正在出货采用7纳米制程工艺的CPU,这意味着AMD可以在每个芯片上容纳更多的晶体管,从而提高计算能力。
英特尔最初计划在2016年推出10纳米处理器,但一再延迟并于最近称最早要等到2019年。现在推出了Ice Lake,英特尔似乎终于实现了自己的承诺。
在今年的CES上,英特尔进一步扩大了自己的芯片产品阵容,推出了6款专门面向视频游戏PC的第9代芯片。这些芯片新品将于本月晚些时候出货,从入门级Core i3一直到新的Core i9处理器。英特尔还表示,计划将第9代芯片用于H系列笔记本电脑,于今年第二季度推出。
展望未来,英特尔预览了一个名为Lakefield的新混合型CPU客户端平台采用英特尔的Foveros 3D封装技术。Lakefield CPU配备5个核心,包括1个10nm Sunny Cove核心和4个基于Intel Atom的核心,并将不同的知识产权组合到一款产品中,占用的主板空间更小。英特尔表示,这将使计算机制造商“更轻松地实现轻薄外形设计”。
英特尔还公布了代号Project Athena的创新计划,该计划提供了一系列行业规范,旨在帮助“引入新一代高级笔记本电脑,旨在实现新体验并利用下一代技术如5G和人工智能”。
英特尔表示,该规范罗列了实现这些新技术的平台要求、用户体验以及实际使用模式定义的基准测试目标。英特尔预计,采用Project Athena规范的首批设备将于今年下半年出货。
在AI工作负载方面,英特尔详细介绍了新推出的Nervana Neural Network Processor for Inference。英特尔城,这是一种新型芯片,旨在加快人工智能训练的推理速度,或者人工智能模型根据接收到的数据得出结论的速度。
Moor Insights&Strategy首席分析师Patrick Moorhead表示,这是一个重要的发布,因为英特尔声称NNP-I在实际应用的推理性能方面可以胜过Nvidia的GPU。
Moorhead说:“如果这是真的,那将一个重要的消息。英特尔似乎非常有信心,我期待看到运行生产工作负载的第三方基准测试结果。”
英特尔表示,这款代号为“Spring Crest”的芯片新品将于今年晚些时候发布。
最后,英特尔正在扩大自己的“片上系统”生态,推出了代号为Snow Ridge的10nm平台,该平台旨在实现5G无线接入和边缘计算工作负载。英特尔表示,此举目的是将英特尔架构引入无线接入基站,并允许更多计算功能分布到网络边缘。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。