这是关于K-DB锁技术的最后一部分,此前,陆续介绍了K-DB的演进、基本架构、锁目录的存储以及同数据块映射关系的建立等。本文将介绍K-DB锁包含的信息和运行机制,也就是每条锁到底包含哪些信息,以及每一条锁是如何建立、执行和取消的。
K-DB锁包含的信息
不同数据库产品的锁记录的信息差异不大,通用数据库在集群架构下通常需要的锁信息如下。锁信息的复杂性更多与技术架构相关。集群架构的数据库锁,需要记录的信息远远超过了Active-Standby架构的数据库产品,K-DB锁纪录的信息主要包含以下几点:
K-DB锁的运行及测试数据
数据库锁的运行可分为申请、使用和取消三个环节,其中申请环节最为复杂,其他环节较为简单。
CWLS——锁管理的核心
CWLS(Cluster Wait-lock Service)模块负责系统锁的批准、生成和执行,是系统锁管理的核心模块。当一个instacne 向数据块的master 节点申请锁时,master 节点通过cluster wait-lock service查看当前锁的使用情况。申请进程主要一共有2个队列,一个是已经分配的队列,一个是等待转换队列。分配成功的队列上的锁模式的兼容性,必然是兼容的,与之相反的是,等待转换队列的锁模式是不兼容的,需要等待。例如,2个节点同时申请对用一个数据块进行读取操作。那么它们需要申请的是读共享锁。这2个锁是兼容的,可以同时放在分配列表中。GLD 中会记录下这两个节点的锁信息——共享锁。之后第三个节点想要修改这个数据块,它需要申请的独占锁。master节点的CWS发现该模式与当前分配链表中的锁信息不兼容,此时它需要等待。先把它放在conver queue中等待。向grant queen中的正在持有锁的实例发送请求,要求它们将当前的锁进行降级为与他兼容的模式。
好文章,需要你的鼓励
科技专家Sungjoo Yoon在TED演讲中提出"偏好原理",认为了解用户喜好信息越多,就能创造更强大的技术。他将市场变化比作"地壳运动",从1969年命令行界面到80年代GUI,再到90年代网络界面,技术发展都遵循这一规律。自然语言处理能建立信任,而AI智能体时代的到来意味着非人类参与者将在人类主导的世界中发挥作用。
德国图宾根大学研究团队发现现代AI视觉模型具备强大的图像排序能力,能够理解年龄、美观程度等连续属性并进行准确排序。研究测试了7种AI模型在9个数据集上的表现,发现CLIP模型表现最佳,且仅需极少样本就能学会排序。这一突破为照片管理、电商展示、社交媒体等领域提供了新的技术方案。
微软推出了Copilot Vision AI新功能,该技术能够扫描和分析用户屏幕上的所有内容。这项AI视觉技术可以实时理解用户正在查看的信息,包括文本、图像和应用程序界面,为用户提供更加智能化的交互体验和个性化建议。此功能的推出标志着AI助手向更深层次的用户体验集成迈进。
KAUST团队开发UnMix-NeRF技术,首次实现3D场景重建与材料识别的同步。该系统利用光谱成像技术,能够识别物体的材料特性,不仅重建逼真3D场景,还可自动分离不同材料区域。技术在多个数据集上表现优异,为机器人、增强现实、工业检测等领域带来新突破。