这是关于K-DB锁技术的最后一部分,此前,陆续介绍了K-DB的演进、基本架构、锁目录的存储以及同数据块映射关系的建立等。本文将介绍K-DB锁包含的信息和运行机制,也就是每条锁到底包含哪些信息,以及每一条锁是如何建立、执行和取消的。
K-DB锁包含的信息
不同数据库产品的锁记录的信息差异不大,通用数据库在集群架构下通常需要的锁信息如下。锁信息的复杂性更多与技术架构相关。集群架构的数据库锁,需要记录的信息远远超过了Active-Standby架构的数据库产品,K-DB锁纪录的信息主要包含以下几点:
K-DB锁的运行及测试数据
数据库锁的运行可分为申请、使用和取消三个环节,其中申请环节最为复杂,其他环节较为简单。
CWLS——锁管理的核心
CWLS(Cluster Wait-lock Service)模块负责系统锁的批准、生成和执行,是系统锁管理的核心模块。当一个instacne 向数据块的master 节点申请锁时,master 节点通过cluster wait-lock service查看当前锁的使用情况。申请进程主要一共有2个队列,一个是已经分配的队列,一个是等待转换队列。分配成功的队列上的锁模式的兼容性,必然是兼容的,与之相反的是,等待转换队列的锁模式是不兼容的,需要等待。例如,2个节点同时申请对用一个数据块进行读取操作。那么它们需要申请的是读共享锁。这2个锁是兼容的,可以同时放在分配列表中。GLD 中会记录下这两个节点的锁信息——共享锁。之后第三个节点想要修改这个数据块,它需要申请的独占锁。master节点的CWS发现该模式与当前分配链表中的锁信息不兼容,此时它需要等待。先把它放在conver queue中等待。向grant queen中的正在持有锁的实例发送请求,要求它们将当前的锁进行降级为与他兼容的模式。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。