这是关于K-DB锁技术的最后一部分,此前,陆续介绍了K-DB的演进、基本架构、锁目录的存储以及同数据块映射关系的建立等。本文将介绍K-DB锁包含的信息和运行机制,也就是每条锁到底包含哪些信息,以及每一条锁是如何建立、执行和取消的。
K-DB锁包含的信息
不同数据库产品的锁记录的信息差异不大,通用数据库在集群架构下通常需要的锁信息如下。锁信息的复杂性更多与技术架构相关。集群架构的数据库锁,需要记录的信息远远超过了Active-Standby架构的数据库产品,K-DB锁纪录的信息主要包含以下几点:
K-DB锁的运行及测试数据
数据库锁的运行可分为申请、使用和取消三个环节,其中申请环节最为复杂,其他环节较为简单。
CWLS——锁管理的核心
CWLS(Cluster Wait-lock Service)模块负责系统锁的批准、生成和执行,是系统锁管理的核心模块。当一个instacne 向数据块的master 节点申请锁时,master 节点通过cluster wait-lock service查看当前锁的使用情况。申请进程主要一共有2个队列,一个是已经分配的队列,一个是等待转换队列。分配成功的队列上的锁模式的兼容性,必然是兼容的,与之相反的是,等待转换队列的锁模式是不兼容的,需要等待。例如,2个节点同时申请对用一个数据块进行读取操作。那么它们需要申请的是读共享锁。这2个锁是兼容的,可以同时放在分配列表中。GLD 中会记录下这两个节点的锁信息——共享锁。之后第三个节点想要修改这个数据块,它需要申请的独占锁。master节点的CWS发现该模式与当前分配链表中的锁信息不兼容,此时它需要等待。先把它放在conver queue中等待。向grant queen中的正在持有锁的实例发送请求,要求它们将当前的锁进行降级为与他兼容的模式。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。