数据库锁专门协调不同进程间的资源冲突,系统资源冲突的类型、频率、复杂度等决定了锁技术的发展,而资源冲突的情况又与数据库系统的基本架构高度相关。例如,在standby架构下,虽然以多节点集群运行,但是实际各个节点轮换对资源进行操作,资源冲突更多的体现为节点内进程或者是线程之间的冲突,相对简单,与之相应的锁机制也就简单。而K-RAC同时支持多个节点共同操作,由此带来的资源冲突问题远比其他架构更为复杂。因而,本文将先介绍K-DB的基本架构,由此引出K-DB锁的存储管理、构成以及锁同数据库映射关系的建立等。
基于共享磁盘的K-RAC
K-RAC是浪潮基于共享存储的集群技术。数据库实例节点存放数据库的执行文件和参数配置文件等。共享数据文件,日志文件,控制文件这些数据库的必备文件,此外还有集群控制文件(这点是区别于单机数据库),都存放在共享磁盘上。
K-DB集群物理架构图
全局缓存融合
在RAC集群中,不仅磁盘共享,从逻辑上看,各个节点之间的内存也可看做是共享的。比如,当一个节点即将读取的数据已经在另一个节点的内存中时,该节点可以从另一个节点的内存中获取数据,避免了从磁盘中读取,减少I/O的消耗。这个技术就是数据库的缓存融合,这是K-DB 数据库RAC集群的技术核心和技术难点。
K-DB锁机制的构成
在设计锁机制的时候,应先设计好以下3个问题:
下图是K-DB共享存储集群的进程架构图。橙色的部分表示处理缓存融合的主要模块。
K-DB 进程架构图
其中,
GLD全局锁目录存放着数据库用户锁信息;
Cluster Wait-lock Service 集群等待锁服务是用于提供全局锁管理的;
Cluster Cache Control集群数据缓存控制器,用于处理数据库中数据块的传输。
上述三个模块一起协调处理,实现了数据库集群的锁机制管理。
K-DB锁与相关的数据管理
K-DB在每一个节点都会划分出一部分内存与其他节点共享,组成share pool,GLD就是位于每一个节点的share pool 中,所有节点的GLD 汇总在一起构成完整的GLD。
介绍完了GLD之后,下一步就是让锁和相应的数据库建立可逆映射关系,这种映射关系的建立是通过为数据库指定master节点的方式实现的。每一个数据块会根据它的block address计算得出hash值,来对应一个master节点,在master 节点中记录该数据块的锁信息。
在如下图中3个节点的集群中,A,B,C三个节点中每一个节点的内存区域,都是GLD的一部分,3个内存区域组成在一起,构成了GLD所有的数据库,通过hash算法,对应的master节点平均分配到3个节点中。
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。