数据库锁专门协调不同进程间的资源冲突,系统资源冲突的类型、频率、复杂度等决定了锁技术的发展,而资源冲突的情况又与数据库系统的基本架构高度相关。例如,在standby架构下,虽然以多节点集群运行,但是实际各个节点轮换对资源进行操作,资源冲突更多的体现为节点内进程或者是线程之间的冲突,相对简单,与之相应的锁机制也就简单。而K-RAC同时支持多个节点共同操作,由此带来的资源冲突问题远比其他架构更为复杂。因而,本文将先介绍K-DB的基本架构,由此引出K-DB锁的存储管理、构成以及锁同数据库映射关系的建立等。
基于共享磁盘的K-RAC
K-RAC是浪潮基于共享存储的集群技术。数据库实例节点存放数据库的执行文件和参数配置文件等。共享数据文件,日志文件,控制文件这些数据库的必备文件,此外还有集群控制文件(这点是区别于单机数据库),都存放在共享磁盘上。
K-DB集群物理架构图
全局缓存融合
在RAC集群中,不仅磁盘共享,从逻辑上看,各个节点之间的内存也可看做是共享的。比如,当一个节点即将读取的数据已经在另一个节点的内存中时,该节点可以从另一个节点的内存中获取数据,避免了从磁盘中读取,减少I/O的消耗。这个技术就是数据库的缓存融合,这是K-DB 数据库RAC集群的技术核心和技术难点。
K-DB锁机制的构成
在设计锁机制的时候,应先设计好以下3个问题:
下图是K-DB共享存储集群的进程架构图。橙色的部分表示处理缓存融合的主要模块。
K-DB 进程架构图
其中,
GLD全局锁目录存放着数据库用户锁信息;
Cluster Wait-lock Service 集群等待锁服务是用于提供全局锁管理的;
Cluster Cache Control集群数据缓存控制器,用于处理数据库中数据块的传输。
上述三个模块一起协调处理,实现了数据库集群的锁机制管理。
K-DB锁与相关的数据管理
K-DB在每一个节点都会划分出一部分内存与其他节点共享,组成share pool,GLD就是位于每一个节点的share pool 中,所有节点的GLD 汇总在一起构成完整的GLD。
介绍完了GLD之后,下一步就是让锁和相应的数据库建立可逆映射关系,这种映射关系的建立是通过为数据库指定master节点的方式实现的。每一个数据块会根据它的block address计算得出hash值,来对应一个master节点,在master 节点中记录该数据块的锁信息。
在如下图中3个节点的集群中,A,B,C三个节点中每一个节点的内存区域,都是GLD的一部分,3个内存区域组成在一起,构成了GLD所有的数据库,通过hash算法,对应的master节点平均分配到3个节点中。
好文章,需要你的鼓励
AI能让够更早,更准确的发现并预测癌变的发生,这也是目前AI医疗的的一个主流发展方向,更早的发现,更准确的预测。最近一项来自美国国立卫生研究院(NIH)的研究就在对肺癌精准预测方向上取得了重大突破
字节跳动联合浙江大学发布了ImmerseGen系统,这是一个能根据文字描述自动生成VR世界的AI工具。该系统采用轻量化代理和RGBA纹理技术,用AI代理协作完成从地形生成到物体布置的全流程,还能添加动态效果和环境音效。相比传统方法,它生成的场景效率提升数十倍,在移动VR设备上达到79帧流畅运行,为VR内容创作带来革命性突破。
Salesforce发布Agentforce 3平台重大升级,新增指挥中心提供AI智能体实时性能监控,支持MCP开放标准实现与数百种企业工具无缝集成。数据显示AI智能体使用量六个月内激增233%,超8000家客户部署该技术。百事可乐等全球企业已将其深度集成到业务运营中。新版本还提供50%更低延迟、增强安全性和200多个预配置行业操作模板,帮助企业快速部署功能性AI智能体。
慕尼黑大学研究团队开发了SwarmAgentic技术,这是首个能够完全自主生成智能体系统的框架,无需人工预设模板。该技术借鉴蜂群智能原理,让AI系统自己决定需要什么角色、如何分工协作。在旅行规划等六项复杂任务测试中,SwarmAgentic表现优异,在旅行规划任务上比现有最佳方法提升261.8%,展现了全自动智能体系统设计的巨大潜力。