让更多的最终用户满意 让自己更好的活下去
不管怎样,我们都必须承认,OpenPOWER基金会两年来的成就是有目共睹的。无论IBM的自身原则如何,它都极大增强了IBM POWER的生态系统。尤其在中国市场,POWER获得了更多的重视,这显然是IBM喜闻乐见的,虽然随着CP系列处理器的不断发展,IBM自己的POWER产品在中国市场的收益必然会受到影响,但从长远的生态建设来讲,这是值得的。
另一方面,CAPI在组件级领域的生态聚集效应也正在增强,这对于POWER系统的多样化设计也是非常有利。在这一点上,英特尔的处境反应有点像之前在服务器市场中的IBM,毕竟自己不可能做出非常丰富的外围加速设计,这方面的确落在OpenPOWER的后面。这也正是OpenPOWER开放策略的一个亮点,也是英特尔“半成品”战略的一个负作用。
不过,英特尔收购ALTERA也给我们提了一个醒——它是非常善于自我修正的公司。从早期Pentium 4架构回归Pentium M架构,以及在64位处理器竞争中转败为胜的历史中,我们可以看到英特尔自我修正的能力。不久的将来我相信会看到来自英特尔类似于CAPI的设计,但我同样相信,“半成品”的策略并不会因此改变。
归根结底,聪明的公司会不断吸取外界的经验来完善自己的生态,努力适应竞争与市场的需求,但是每家公司也都有自己的主线或不会轻易动摇的原则。不管是英特尔还是IBM或是ARM,大家其实都在不同领域与层次上相互借鉴,在保证自己核心利益的基础上,做出适当的调整。而这种相互的竞争,也会让最终的解决方案更贴近需求,让最终用户获益。
因此脱离现实的需求,单纯的讨论谁更开放,或者说谁的开放策略是更好的,并没有太多的实际意义(比如在需求相对单一的年代,封闭的RISC小型机也活得很好呀)。而真正的衡量标准一直存在,且恒久不变,那就是——让更多的最终用户对你主导的架构满意,从而让自己更好的活下去!
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
KAIST AI团队通过深入分析视频生成AI的内部机制,发现了负责交互理解的关键层,并开发出MATRIX框架来专门优化这些层。该技术通过语义定位对齐和语义传播对齐两个组件,显著提升了AI对"谁对谁做了什么"的理解能力,在交互准确性上提升约30%,为AI视频生成的实用化应用奠定了重要基础。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
乔治亚理工学院和微软研究团队提出了NorMuon优化器,通过结合Muon的正交化技术与神经元级自适应学习率,在1.1B参数模型上实现了21.74%的训练效率提升。该方法同时保持了Muon的内存优势,相比Adam节省约50%内存使用量,并开发了高效的FSDP2分布式实现,为大规模AI模型训练提供了实用的优化方案。