ZDNet至顶网服务器频道 04月17日 编译: 英伟达已经正式发布CUDA 6,此次针对其专有GPU编程语言的更新据称“包含有CUDA发展史上最为引人瞩目的全新特性。”
从卖点角度讲,CUDA 6最为重要的特性在于其采用的统一内存方案,这一点我们在去年十一月CUDA工具包6.0发布时就已经作出过阐述。简而言之,统一内存机制能够帮助大家免于在CPU与GPU各自独立的内存空间之间来回复制数据。
这一次升级也仍然延续上述思路。在CUDA 6中,“受管理的内存可通过单一指针接受来自CPU与GPU的访问,”英伟达公司GPU业务负责人Mark Harris在一篇博文中解释道。
“关键在于这套系统会将统一内存中的数据在主机与设备之间进行自动化迁移与分配,从而继续保留CPU内存指向CPU运行代码、GPU内存指向GPU运行代码的使用感受。”
虽然Harris将统一内存方案放在最为显要的位置并对此作出了非常详尽的说明,但他同时也在这篇博文中提到“CUDA 6所带来的其它四项重要新特性。”
首先登场的新特性是,英伟达专门针对嵌入式以及移动用例的Tegra K1系统芯片如今正式提供CUDA支持能力,这相当于践行了该公司作出的“CUDA无处不在”这一远期规划。
作为英伟达最新推出的移动处理器,Tegra K1将192核心Kepler GPu与四核心ARM Cortex-A15 CPU相结合,此外还集成了视频编码与解码、图像/信号处理以及其它多项细节改进。根据Harris的说法,这相当于把“多种其它系统级功能汇总在一起。”英伟达最近在GPU开发大会上公开的Jetson TK1嵌入式开发组件正是由Tegra K1提供计算资源支持。
Jetson TK1嵌入式开发组件——192个CUDA核心售价192美元
Harris在博文中同时提到,“CUDA 6提供XT Library接口,它能够为2个或者更多GPU提供3级cuBLAS以及2D/3D cuFFT程序扩展能力。”
直白地讲,这意味着如果大家的系统拥有一块或者多块双GPU显卡——例如高性能计算环境——它们能够在CUDA 6的帮助下实现更为快捷的傅立叶转换以及矩阵-矩阵乘法运算。除此之外,那些规模过大以至于无法被容纳在单独GPU内存中的矩阵也能借助CPU内存实现运算速度提升。
再有,CUDA 6允许大家在自己的个人设备上开发软件并通过英伟达的NSight Eclipse版本将其运行在远程设备之上——无论是性能强大的高性能计算集群还是轻量化Jetson K1组件。
“在运行在本地PC(例如笔记本电脑)上的IDE中编辑源代码,而后以远程方式在配备CUDA兼容GPU的服务器上一步步进行应用程序的创建、运行、调试以及配置工作,”Harris写道。
CUDA开发环境也迎来一系列重要改进,他同时也提到了CUDA API、库乃至开发工具所获得的一系列全新特性、改进与漏洞修复。如果大家对上述内容有兴趣,不妨点击此处查看CUDA工具包6.0的发布指南(PDF格式)。
如果大家更倾向于亲手操作并在实际使用中进行摸索,则可以点击此处从英伟达的CUDA专区中下载CUDA 6。
好文章,需要你的鼓励
AI正在彻底改变营销行业。IDC预测到2028年,五分之三的营销功能将由AI处理。传统搜索引擎优化正被"生成式引擎优化"取代,品牌需要在AI回答中被提及而非仅仅排名靠前。AI代理将实现自主商务交易,营销、销售和客服边界正在消失。78%的营销人员预计三年内四分之一的工作将被自动化。品牌实力和第一方数据成为关键资产,企业必须重新构想AI中介世界中的客户关系。
布朗大学研究团队开发AssertBench测试工具,首次系统评估AI在面对用户错误引导时的坚持能力。通过对比AI在正面、负面用户框架下的反应差异,研究发现多数模型存在"讨好倾向",容易为迎合用户而放弃正确判断。研究还发现知识不足的AI反而更固执的悖论现象,为AI训练和应用提供重要启示。
HPE在2025年Discover大会上发布GreenLake Intelligence代理式AI框架,将AI代理集成到网络、存储管理等各个系统中。虽然被称为"自主式",但仍需人工监督决策。HPE高管表示,在明确定义的单一领域内AI代理已实现自主运行,但企业全面自主化仍需时间。此外,HPE还发布支持英伟达Blackwell GPU的新硬件系统,扩大AI工厂联盟合作。
UC圣地亚哥和西蒙弗雷泽大学联合开发了GMT系统,这是首个能让机器人掌握多种人类动作的通用控制器。通过自适应采样和专家混合架构,单一系统可同时处理走路、跳舞、武术等复杂技能,在真实机器人上展现出卓越的稳定性和流畅性,为通用人形机器人的实现迈出关键一步。