Perlmutter将帮助科学家推动暗能量等前沿课题的研究
英伟达公司本周四公布了号称全球最强的AI超级计算机。这是一台名为Perlmutter的庞然大物,专供美国国家能源研究科学计算中心(NERSC)使用。

英伟达公司CEO黄仁勋介绍称,“Perlmutter将AI与高性能算力融合起来,有望推动材料科学、量子物理学、气候预测、生物研究等众多领域实现突破。”
这项耗资1.46亿美元的超级工程将分两个阶段推进,但目前的成果已经具备了一定可用性。
第一阶段主要由HPE工程师们组装基础设施以容纳设备,并部署总计1536个计算节点,每个节点包含4个由NVLink-3连接的英伟达A100 Tensor Core GPU外加1块AMD Milan Epyc处理器。据了解,这台超级计算机共包含6159个英伟达最新A100 GPU与1536块AMD服务器芯片,可在FP16精度下实现四百亿亿次AI计算性能。
第二阶段将于今年晚些时候启动,计划为设备添加更多CPU核心。新增的3072个计算节点将各包含2块AMD Milan处理器,且每节点封装512 GB内存。英伟达全球高性能计算与人工智能产品营销负责人Dion Harris在采访中表示,Perlmutter完成之后有望一举冲进全球超算五百强榜单的前五位置。之所以无法直接登顶,是因为超算五百强榜单要求以FP64精度为基础比较算力水平。
Perlmutter将在劳伦斯伯克利国家实验室部署并发挥作用。事实上,Perlmutter这个名字就来自该实验室兼加州大学伯克利分校物理学家Saul Perlmutter,他对宇宙膨胀速度超过原有预期的证明为他赢得了2011年诺贝尔奖。
这台超级计算机的一大核心诉求,在于构建起迄今为止规模最大的宇宙3D模拟星图。研究人员将把由暗能源光谱仪(安装在基特峰国家天文台直径四米的尼克拉斯·梅耶尔望远镜上,可捕获约3000万个星系发出的光)捕捉到的图像集中起来,供Perlmutter高效处理。
宇宙学家可以使用望远镜图像计算出不同星体之间的距离,由此判断暗能量对于宇宙膨胀的影响。与哈勃常数相关的膨胀率一直是个备受争议的话题,各方科学家对其具体数值始终莫衷一是。
Perlmutter将集中处理暗能量光谱仪捕捉的图像,并帮助研究人员确定望远镜接下来值得关注的新区域。该传感器每晚可收集多达15万个数据点,手动检查各星系光谱显然没有现实可行性,必须借助超级计算机之力实现自动化。劳伦斯伯克利国家实验室的科学家们希望在Perlmutter的帮助下,将数据的处理周期由以往的几周甚至几个月缩短为几天。
NERSC数据架构师Rollin Thomas致力于推进团队对于系统软件的应用,他认为GPU能够显著加速数字计算流程。他强调,“在准备工作中,我们使用GPU实现了20倍加速效果,我个人对此非常满意。”
这台超级计算机还支持OpenMP与英伟达HPC SDK——这是一套编译器与软件库,能够在GPU上对使用C++及Fortran编写的科学计算进行加速。Rapids则是英伟达在该计算机上配套使用的另一套框架,用于支持Python编写的数据科学应用程序。
劳伦斯伯克利国家实验室一位发言人在采访中表示,“Perlmutter系统将在推动美国科学研究方面发挥关键作用,并在包括先进计算、人工智能与数据科学在内的诸多关键技术领域保持领先及核心地位。”
“这套系统还将被广泛应用于气候与环境、清洁能源技术、半导体与微电子学、以及量子信息科学的研究。”
Perlmutter将成为NERSC的旗舰超级计算机,取代2016年安装部署的Cori系统(性能为30千万亿次)。Cori将被逐步拆解并最终彻底淘汰。
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。