超大规模分析数据仓库供应商 Ocient 正与 AMD 展开合作,采用其第四代 EPYC CPU,使处理能力提升了 3.5 倍,内存吞吐量提高了一倍以上。
Ocient 提供一个大规模并行关系数据库系统,能够分析 PB 级数据,意味着可以在几秒到几分钟内处理数万亿行数据。Ocient 超大规模数据仓库 (OHDW) 采用计算邻接存储架构 (CASA),消除网络瓶颈并实现快速数据访问。其 Megalane 技术的特点是"通过启用极大数量的并行任务"来提高吞吐量。数据可靠性则由纠删码技术提供保障。
CEO Chris Gladwin 表示:"AI 和计算密集型数据分析工作负载正在给全球数据中心带来巨大压力,这意味着硬件和软件带来的效率对企业数据增长、性能和成本至关重要。我们很高兴能与 AMD 合作,以提升客户数据性能、节省成本,并提高运营和能源效率。"
Ocient 的超大规模数据仓库在处理器要求方面已经支持 Intel 和 AMD 两种 CPU。现在 AMD 成为了首选。
该公司告诉我们:"他们选择了配备 96 个实际核心的 AMD 9654,而不是前代 28 核心的 Intel Icelake 6348。增加的核心数量,加上提高的全核心时钟速度,带来了性能的提升。不仅如此,在 AMD 平台上,每个节点的成本、空间和功耗都相似,这使得 Ocient 能够在更小的系统占用空间内提供领先的性能解决方案,并且具有最具成本效益的功耗要求。"
Ocient 基于核心的许可模式优先考虑成本效益和计算密集型工作负载的性能。通过使用 AMD CPU,Ocient 表示其客户将获得:
- 计算密集型工作负载性能提升 3 倍 - 通过改进的功率和能源效率降低运营成本,每核心功耗降低 3 倍 - 为未来的 AI 和分析需求提供持续的可扩展性
该公司表示,由于 AI 和数据分析需求的增加,预计到 2026 年全球数据中心能源消耗将增加一倍以上,企业越来越需要寻找降低能源消耗的方法。转向 AMD 将有助于解决这个问题。
AMD 战略业务发展公司副总裁 Kumaran Siva 表示:"我们很高兴能与 Ocient 合作,将 AMD EPYC 处理器的性能与 Ocient 高效的软件解决方案相结合,使企业能够更轻松、高效地处理最具挑战性的 AI 和分析工作负载。"
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。