超大规模分析数据仓库供应商 Ocient 正与 AMD 展开合作,采用其第四代 EPYC CPU,使处理能力提升了 3.5 倍,内存吞吐量提高了一倍以上。
Ocient 提供一个大规模并行关系数据库系统,能够分析 PB 级数据,意味着可以在几秒到几分钟内处理数万亿行数据。Ocient 超大规模数据仓库 (OHDW) 采用计算邻接存储架构 (CASA),消除网络瓶颈并实现快速数据访问。其 Megalane 技术的特点是"通过启用极大数量的并行任务"来提高吞吐量。数据可靠性则由纠删码技术提供保障。
CEO Chris Gladwin 表示:"AI 和计算密集型数据分析工作负载正在给全球数据中心带来巨大压力,这意味着硬件和软件带来的效率对企业数据增长、性能和成本至关重要。我们很高兴能与 AMD 合作,以提升客户数据性能、节省成本,并提高运营和能源效率。"
Ocient 的超大规模数据仓库在处理器要求方面已经支持 Intel 和 AMD 两种 CPU。现在 AMD 成为了首选。
该公司告诉我们:"他们选择了配备 96 个实际核心的 AMD 9654,而不是前代 28 核心的 Intel Icelake 6348。增加的核心数量,加上提高的全核心时钟速度,带来了性能的提升。不仅如此,在 AMD 平台上,每个节点的成本、空间和功耗都相似,这使得 Ocient 能够在更小的系统占用空间内提供领先的性能解决方案,并且具有最具成本效益的功耗要求。"
Ocient 基于核心的许可模式优先考虑成本效益和计算密集型工作负载的性能。通过使用 AMD CPU,Ocient 表示其客户将获得:
- 计算密集型工作负载性能提升 3 倍 - 通过改进的功率和能源效率降低运营成本,每核心功耗降低 3 倍 - 为未来的 AI 和分析需求提供持续的可扩展性
该公司表示,由于 AI 和数据分析需求的增加,预计到 2026 年全球数据中心能源消耗将增加一倍以上,企业越来越需要寻找降低能源消耗的方法。转向 AMD 将有助于解决这个问题。
AMD 战略业务发展公司副总裁 Kumaran Siva 表示:"我们很高兴能与 Ocient 合作,将 AMD EPYC 处理器的性能与 Ocient 高效的软件解决方案相结合,使企业能够更轻松、高效地处理最具挑战性的 AI 和分析工作负载。"
好文章,需要你的鼓励
AI能让够更早,更准确的发现并预测癌变的发生,这也是目前AI医疗的的一个主流发展方向,更早的发现,更准确的预测。最近一项来自美国国立卫生研究院(NIH)的研究就在对肺癌精准预测方向上取得了重大突破
字节跳动联合浙江大学发布了ImmerseGen系统,这是一个能根据文字描述自动生成VR世界的AI工具。该系统采用轻量化代理和RGBA纹理技术,用AI代理协作完成从地形生成到物体布置的全流程,还能添加动态效果和环境音效。相比传统方法,它生成的场景效率提升数十倍,在移动VR设备上达到79帧流畅运行,为VR内容创作带来革命性突破。
Salesforce发布Agentforce 3平台重大升级,新增指挥中心提供AI智能体实时性能监控,支持MCP开放标准实现与数百种企业工具无缝集成。数据显示AI智能体使用量六个月内激增233%,超8000家客户部署该技术。百事可乐等全球企业已将其深度集成到业务运营中。新版本还提供50%更低延迟、增强安全性和200多个预配置行业操作模板,帮助企业快速部署功能性AI智能体。
慕尼黑大学研究团队开发了SwarmAgentic技术,这是首个能够完全自主生成智能体系统的框架,无需人工预设模板。该技术借鉴蜂群智能原理,让AI系统自己决定需要什么角色、如何分工协作。在旅行规划等六项复杂任务测试中,SwarmAgentic表现优异,在旅行规划任务上比现有最佳方法提升261.8%,展现了全自动智能体系统设计的巨大潜力。