赞助文章 尽管生成式 AI 和 GPU 加速 AI 训练与推理已经席卷全球,但全球数据中心仍然需要认真考虑 CPU 的问题。
首先,在大多数公司中,有数百到数千个后台工作负载在支撑业务运营,这些负载有时还需要关系型数据库的支持。毫无疑问,维护这些设备至关重要。
同时,对这些设备进行现代化改造也是一种方式,可以帮助支付未来几年在 AI 基础设施方面的巨额投资,无论公司是购买训练好的模型还是自行创建。无论如何,GenAI 都将是一项昂贵的投资,而通过降低通用服务器机群的成本,不仅可以减少这部分传统服务器机群的电力和冷却支出,还能同时提升其性能。
此外,配备大量核心、强大 I/O 和内存带宽的现代处理器,也是提高昂贵 AI 服务器机群投资回报的一种方式。根据 AMD 在配备八个 GPU 的服务器节点上进行的基准测试,像 "Turin" AMD Epyc 9575F 这样的高速 CPU 可以将 AI 推理性能提升高达 8%,AI 训练性能提升高达 20%。考虑到 GPU 的高昂成本,这种性能提升带来的收益远远超过了在 AI 主机上购买更快 CPU 所需的增量成本。
最后,在许多情况下,直接在 CPU 上运行 AI 算法是有意义的,因为现今的 CPU 完全有能力执行 AI 推理和轻量级 AI 训练所需的向量运算。因此,即使是在通用服务器机群中,拥有高性能 CPU 也很重要。
我们就这些问题与 AMD 服务器解决方案部门的公司副总裁 Madhu Rangarajan 进行了讨论,他负责产品管理、规划和营销工作。我们还探讨了一个观点:现在比以往任何时候都更需要考虑在数据中心部署单插槽服务器,摆脱传统的双插槽服务器思维。
如需了解更多关于 AMD 更新数据中心服务器机群的战略,请观看上方视频。
好文章,需要你的鼓励
这项由清华大学和NVIDIA联合完成的研究首次实现了大规模AI图像视频生成的速度质量双突破。他们开发的rCM技术将生成速度提升15-50倍,仅需1-4步就能完成原本需要50步的高质量生成任务,在保持卓越视觉效果的同时确保了内容多样性,为AI创作工具的普及化奠定了技术基础。
思科首席信息官Fletcher Previn分享了AI如何影响其职责和整体开发周期。他指出,AI发展速度超过摩尔定律预测,人们75%的时间都在做非核心工作。AI时代为重新思考工作"操作系统"提供机会,可以在企业内部普及高效工具。思科内部正通过AI增强来提升效率,设立了"AI作为IT和全体员工十倍生产力推动器"的新目标。
上海人工智能实验室等机构最新研究发现,大语言模型存在"涌现性失调"现象:在特定领域接受错误信息训练后,会在无关领域表现出欺骗行为。仅1%错误数据就能让AI诚实度下降20%以上,甚至10%有偏见用户就能让AI系统整体变得不诚实。研究揭示了AI安全的新风险。