对于需要运行生成式AI工作负载的企业来说,基于英特尔至强处理器的Aible无服务器解决方案可帮助其降低成本、提高智能化,并有效提升RAG及微调效率
近日,英特尔与端到端Serverless(无服务器)生成式AI和增强型分析方案提供商Aible合作,为企业客户提供了创新的解决方案,助力其在不同代际的英特尔®至强® CPU上运行生成式AI与检索增强生成(RAG)用例。此次合作包含了工程优化和基准测试项目,显著增强了Aible以低成本为企业客户提供生成式AI结果的能力,并帮助开发人员在应用中部署AI。在双方的通力合作下,该可扩展、高效的AI解决方案可通过高性能硬件帮助客户迎接AI挑战。
英特尔至强处理器
英特尔数据中心与人工智能事业部高级首席工程师Mishali Naik表示:“现在,客户正在寻求高效的企业级解决方案以充分释放AI潜力。我们与Aible的合作,也表明了英特尔正与行业紧密协作,推动AI创新,降低客户使用英特尔至强处理器运行最新生成式AI工作负载的门槛。”
至强处理器的生成式AI性能:Aible的解决方案展示了CPU如何显著提升从运行语言模型至RAG的一系列最新AI工作负载性能。基于针对英特尔处理器的优化,Aible技术采用高效、智能的“端到端无服务器”方法,仅在产生用户请求时才会进行资源消耗。例如,基于用户查询,向量数据库仅需几秒即可激活并检索相关信息,而语言模型同样只需简单启动即可处理并响应用户请求,这种按需操作的运行模式有助于企业降低总拥有成本(TCO)。
虽然在多数情况下,RAG功能需通过利用GPU和加速器的并行处理能力来实现,但Aible的无服务器技术与英特尔至强处理器相结合,可使RAG用例完全由CPU来驱动。性能数据显示,多款不同代际的英特尔至强处理器均可高效运行RAG工作负载。
配置详细信息如图,结果可能会有不同
重要意义:Aible通过无服务器的方式使用CPU,可在多个客户之间更为安全地共享底层计算资源,从而帮助客户有效降低生成式AI项目的运营成本。这种降低成本的方式可以类比为用户仅需在使用时购买电力,而非直接租赁发电机。此外,随着生成式AI需求的增长,性能优化和节能降耗变得愈发重要。Aible所提供的基于CPU的服务,为客户提供了一种经济、高效的解决方案。
根据Aible的基准测试分析,当客户采用基于CPU的无服务器解决方案运行RAG模型时,成本节省可高达55倍1。大幅降低的成本证明了Aible独家方法的有效性,同时这种无服务器的CPU采用方式也减少了通过共享服务或专用服务器构建更为昂贵的、基于GPU的基础设施需求。
此次英特尔及英特尔实验室与Aible的合作,共同优化了至强处理器上的AI工作负载。值得一提的是,通过优化Aible针对AVX-512的代码,Aible在至强处理器上实现了显著的性能及吞吐量提升,这也彰显了战略性的软件优化对于整体效率的影响。
在Aible平台的支持下,RAG模型与英特尔至强处理器的结合可推动以下应用落地:
英特尔与Aible的合作始于第四代至强处理器的发布。此后,双方针对至强处理器的AI工作负载、代码和库进行了一系列优化,并大幅提升了Aible的产品性能。
1 英特尔不控制或审计第三方数据。您可咨询其他来源以评估准确性。
配置详情:
1节点,2x英特尔®至强® Platinum 8280L CPU,2.70GHz, 28核心,HT开启,Turbo开启,NUMA 2,集成加速器可用[已使用]:DLB 0 [0],DSA 0 [0],IAA 0 [0],QAT 0 [0],总内存384GB (12x32GB DDR4 2933 MT/s [2934 MT/s]),BIOS SE5C620.86B.02.01.0017.110620230543,微码0x5003604,2x以太网连接X722用于10GBASE-T,1x 894.3G英特尔SSDSC2KB96,1x 1.8T英特尔SSDPE2KX020T8,2x 3.7T英特尔SSDPE2KX040T8,Red Hat Enterprise Linux 8.9 (Ootpa),4.18.0-513.18.1.el8_9.x86_64,WORKLOAD=Aible端到端RAG-LLM,模型=Mistral-7B-OpenOrca-GGUF,all-MiniLM-L6-v2,gcc 12.2.0,IntelLLVM 2024.0.2,llama.cpp,ChromaDB,Langchain,oneAPI基础容器2024.0.1-devel-ubuntu22.04。基于英特尔03/07/24的测试。
1节点,2x英特尔®至强® Platinum 8462Y+,32核心,HT开启,Turbo开启,NUMA 2,集成加速器可用[已使用]:DLB 2 [0],DSA 2 [0],IAA 2 [0],QAT 2 [0],总内存512GB (16x32GB DDR5 4800 MT/s [4800 MT/s]),BIOS 05.12.00,微码0x2b0004d0,2x BCM57416 NetXtreme-E Dual-Media 10G RDMA以太网控制器,2x以太网控制器E810-C for QSFP,2x 3.5T三星MZQL23T8HCLS-00B7C,1x 1.8T三星MZ1L21T9HCLS-00A07,Red Hat Enterprise Linux 8.9 (Ootpa),4.18.0-513.18.1.el8_9.x86_64,WORKLOAD=Aible端到端RAG-LLM,模型=Mistral-7B-OpenOrca-GGUF,all-MiniLM-L6-v2,gcc 12.2.0,IntelLLVM 2024.0.2,llama.cpp,ChromaDB,Langchain,oneAPI基础容器2024.0.1-devel-ubuntu22.05。基于英特尔03/07/24的测试。
1节点,2x英特尔®至强® PLATINUM 8562Y+,32核心,HT开启,Turbo开启,NUMA 2,集成加速器可用[已使用]:DLB 2 [0],DSA 2 [0],IAA 2 [0],QAT 2 [0],总内存512GB (16x32GB DDR5 5600 MT/s [5600 MT/s]),BIOS 3B05.TEL4P1,微码0x21000161,2x以太网控制器X710用于10GBASE-T,2x以太网控制器E810-C for QSFP,1x 894.3G英特尔SSDSC2KG96,1x 3.5T三星MZQL23T8HCLS-00A07,3x 3.5T三星MZQL23T8HCLS-00B7C,Red Hat Enterprise Linux 8.9 (Ootpa),4.18.0-513.18.1.el8_9.x86_64,WORKLOAD=Aible端到端RAG-LLM,模型=Mistral-7B-OpenOrca-GGUF,all-MiniLM-L6-v2,gcc 12.2.0,IntelLLVM 2024.0.2,llama.cpp,ChromaDB,Langchain,oneAPI基础容器2024.0.1-devel-ubuntu22.06。基于英特尔03/07/24的测试。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。