AI基准测试是客户进行芯片选型的重要评估手段。随着英特尔和AMD在CPU上运行的AI工作负载领域争夺领导地位,AI基准之战正在升温。
为了证明自己的产品在AI工作负载的表现,不管是英特尔还是AMD纷纷亮出自己在相关基准测试方面的结果。
前段时间,在COMPUTEX上,AMD的Zen 5 EPYC Turin在人工智能工作负载上比英特尔至强芯片快5.4倍。
但是近日,英特尔表示,正在上市的第五代至强芯片比AMD即将于2024年下半年上市的3nm EPYC Turin处理器更快。英特尔表示,AMD的基准对Xeon性能的描述“不准确”,并分享了自己的基准来反驳AMD的说法。
英特尔自己的内部测试结果显示,至强的性能表现并不逊色,比AMD的基准测试快5.4倍,这样比较起来,至强比EPYC Turin并不弱,这使得目前正在发售的64核Xeon相对于AMD未来的128核机型具有优势——这的确是一个相当令人印象深刻的说法,而且在性能上也有很大的变化。
英特尔表示,AMD没有透露其用于基准测试的软件细节,也没有透露测试所需的SLA。AMD的测试结果与其内部广泛使用的开源软件(Intel Extension for PyTorch)并不匹配。
如果该基准测试代表真实性能,那么可能存在的差异是英特尔对AMX(高级矩阵扩展)数学扩展的支持。这些矩阵数学函数极大地提高了AI工作负载的性能,目前还不清楚AMD在测试英特尔芯片时是否采用了AMX。值得注意的是,AMX支持BF16/INT8,因此软件引擎通常会将INT4权重转换为更大的数据类型,以驱动AMX引擎。AMD的当前一代芯片不支持原生矩阵运算,目前还不清楚Turin是否也支持。
所以测试结果之所以出现这样的巨大差异,还是在软件调优。英特尔的硬件可利用软件框架和工具包进行加速,并获得出色的大模型推理性能,其中包括PyTorch和英特尔 PyTorch扩展包、OpenVINO工具包、DeepSpeed、Hugging Face库和vLLM。
好文章,需要你的鼓励
Akamai的分布式边缘架构从设计之初就以韧性为核心,全球平台通过跨区域负载均衡和智能路由技术,确保即使某些节点出现故障,流量也能无缝切换至可用节点。
卡内基梅隆大学联合Adobe开发出革命性的NP-Edit技术,首次实现无需训练数据对的AI图像编辑。该技术通过视觉语言模型的语言反馈指导和分布匹配蒸馏的质量保障,让AI仅用4步就能完成传统50步的编辑任务,在保持高质量的同时大幅提升处理速度,为图像编辑技术的普及应用开辟了全新道路。
Turner & Townsend发布的2025年数据中心建设成本指数报告显示,AI工作负载激增正推动高密度液冷数据中心需求。四分之三的受访者已在从事AI数据中心项目,47%预计AI数据中心将在两年内占据一半以上工作负载。预计到2027年,AI优化设施可能占全球数据中心市场28%。53%受访者认为液冷技术将主导未来高密度项目。电力可用性成为开发商面临的首要约束,48%的受访者认为电网连接延迟是主要障碍。
复旦大学团队突破AI人脸生成"复制粘贴"痛点,开发WithAnyone模型解决传统AI要么完全复制参考图像、要么身份差异过大的问题。通过MultiID-2M大规模数据集和创新训练策略,实现保持身份一致性的同时允许自然变化,为AI图像生成技术树立新标杆。