AI基准测试是客户进行芯片选型的重要评估手段。随着英特尔和AMD在CPU上运行的AI工作负载领域争夺领导地位,AI基准之战正在升温。
为了证明自己的产品在AI工作负载的表现,不管是英特尔还是AMD纷纷亮出自己在相关基准测试方面的结果。
前段时间,在COMPUTEX上,AMD的Zen 5 EPYC Turin在人工智能工作负载上比英特尔至强芯片快5.4倍。
但是近日,英特尔表示,正在上市的第五代至强芯片比AMD即将于2024年下半年上市的3nm EPYC Turin处理器更快。英特尔表示,AMD的基准对Xeon性能的描述“不准确”,并分享了自己的基准来反驳AMD的说法。
英特尔自己的内部测试结果显示,至强的性能表现并不逊色,比AMD的基准测试快5.4倍,这样比较起来,至强比EPYC Turin并不弱,这使得目前正在发售的64核Xeon相对于AMD未来的128核机型具有优势——这的确是一个相当令人印象深刻的说法,而且在性能上也有很大的变化。
英特尔表示,AMD没有透露其用于基准测试的软件细节,也没有透露测试所需的SLA。AMD的测试结果与其内部广泛使用的开源软件(Intel Extension for PyTorch)并不匹配。
如果该基准测试代表真实性能,那么可能存在的差异是英特尔对AMX(高级矩阵扩展)数学扩展的支持。这些矩阵数学函数极大地提高了AI工作负载的性能,目前还不清楚AMD在测试英特尔芯片时是否采用了AMX。值得注意的是,AMX支持BF16/INT8,因此软件引擎通常会将INT4权重转换为更大的数据类型,以驱动AMX引擎。AMD的当前一代芯片不支持原生矩阵运算,目前还不清楚Turin是否也支持。
所以测试结果之所以出现这样的巨大差异,还是在软件调优。英特尔的硬件可利用软件框架和工具包进行加速,并获得出色的大模型推理性能,其中包括PyTorch和英特尔 PyTorch扩展包、OpenVINO工具包、DeepSpeed、Hugging Face库和vLLM。
好文章,需要你的鼓励
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
AI硬件的竞争才刚刚开始,华硕Ascent GX10这样将专业级算力带入桌面级设备的尝试,或许正在改写个人AI开发的游戏规则。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。