近日,英特尔研究院副总裁、英特尔中国研究院院长宋继强接受记者采访,详细介绍了英特尔神经拟态计算技术的发展现状。

七年磨一剑:从Loihi到Hala Point的飞跃
回溯至2017年,英特尔发布了Loihi神经拟态芯片,标志着其在该领域研究的正式启航。Loihi不仅在芯片中首次实现了生物大脑神经元的模拟,还创新性地将计算逻辑与存储逻辑融为一体,即“存算一体化”。这种设计极大提高了能效比,为后续的研究奠定了坚实基础。历经数年,从Loihi到Hala Point,神经元规模从最初的百万级跃升至十亿级,仅用三年时间就实现了超过10倍的增长,这无疑是神经拟态计算领域的一大里程碑。

最新的Hala Point系统集成了1152个Loihi 2芯片,拥有11.5亿个神经元,神经元规模已达到人脑的1/80。同时,Hala Point的能效比极高,最大功耗2600W,可达到15TOPS的性能。

Loihi 2芯片是Hala Point系统的核心,相较于初代,其在计算密度、速度、互连特性等方面均有显著提升。得益于Intel 4制程技术,晶体管密度和能效比得到了质的飞跃,预示着未来在Intel 3、Intel 18A等更先进制程下,系统规模和效率还将持续突破。宋继强表示,即使保持现有尺寸,未来系统的神经元规模也将实现翻番甚至更多。
应用探索:从机器人到大规模优化
宋继强表示,神经拟态计算适用于对能效和实时性要求高的应用领域,特别适合解决大规模优化问题,如铁路网调度、物流管理等,其能效比传统CPU与GPU方案提升了3000倍。
同时,神经拟态计算也应用于视觉识别、语音识别等AI领域,并在某些任务上实现了百倍以上的能效提升。未来,神经拟态计算有望应用于更广泛的领域,如绿色AI、可持续AI等。
尽管Hala Point规模庞大,但它并非局限于固定的机器人应用。在实际场景中,只需几片Loihi 2芯片就能满足机器人的智能需求。
此外,虽然脑机接口技术与神经拟态计算并非直接绑定,但Loihi系统有能力处理来自脑机接口的信号,为未来应用打开了一扇窗。
在应用生态构建方面,英特尔神经拟态研究社区(INRC)自2018年成立以来,已汇聚200个成员,覆盖了从学术界到产业界,一半的应用研究集中在机器人、无人机等工业领域,通过多模态传感器的输入,实现感知和操控。
INRC不仅促进了神经拟态计算技术的多样化应用探索,还推动了软件堆栈Lava的开发,旨在兼容多种编程框架,支持与CPU、GPU、FPGA等异构计算的协同工作,为开发者提供了更加开放和灵活的环境。
展望未来,三管齐下
虽然神经拟态计算发展迅速,但商业化应用仍面临一些挑战。首先,需要找到适合其优势的应用场景。其次,软件生态尚需进一步完善,以更好地对接科研和产业应用。此外,神经拟态计算也面临器件层面的挑战,需要持续优化硬件架构,以提升性能。总体而言,神经拟态计算正处于快速发展期,未来应用前景广阔。英特尔将继续投入,推动神经拟态计算技术走向商业化,造福人类。
宋继强表示,面对未来,英特尔在神经拟态计算领域采取了“三管齐下”的策略:继续在硬件架构上创新,结合先进制程工艺提升效能;深化软件优化,以应对不断变化的应用需求;并通过INRC拓展应用边界,推动规模化商用。Hala Point不仅是技术实力的展示,更是对神经拟态计算无限可能的展望,预示着一个更高效、更智能时代的到来。
好文章,需要你的鼓励
Python通过PEP 810提案正式引入惰性导入功能,允许程序延迟加载导入库直到实际需要时才执行,而非在启动时全部加载。该提案由指导委员会成员Pablo Salgado于10月3日提出并于11月3日获批。新功能采用选择性加入方式,保持向后兼容性的同时解决了社区长期面临的启动时间过长问题,标准化了当前分散的自定义解决方案。
Meta FAIR团队发布的CWM是首个将"世界模型"概念引入代码生成的32亿参数开源模型。与传统只学习静态代码的AI不同,CWM通过学习Python执行轨迹和Docker环境交互,真正理解代码运行过程。在SWE-bench等重要测试中表现卓越,为AI编程助手的发展开辟了新方向。
Valve最新Steam硬件软件调查显示,Linux用户占比达到3.05%,较上月增长0.37个百分点,相比去年同期增长约50%。游戏网站Boiling Steam分析显示,Windows游戏在Linux平台兼容性达历史最高水平,近90%的Windows游戏能在Linux上启动运行,仅约10%游戏无法启动。
卡内基梅隆大学研究团队发现AI训练中的"繁荣-崩溃"现象,揭示陈旧数据蕴含丰富信息但被传统方法错误屏蔽。他们提出M2PO方法,通过改进数据筛选策略,使模型即使用256步前的陈旧数据也能达到最新数据的训练效果,准确率最高提升11.2%,为大规模异步AI训练开辟新途径。