英特尔在《自然》杂志上发表的研究展示了单电子控制下高保真度和均匀性的量子比特。
英特尔在《自然》杂志发表题为《检测300毫米自旋量子比特晶圆上的单电子器件》的研究论文,展示了领先的自旋量子比特均匀性、保真度和测量数据。这项研究为硅基量子处理器的量产和持续扩展(构建容错量子计算机的必要条件)奠定了基础。

英特尔打造的300毫米自旋量子比特晶圆
英特尔的量子硬件研究人员开发了一种300毫米低温检测工艺,使用互补金属氧化物半导体(CMOS)制造技术,在整个晶圆上收集有关自旋量子比特器件性能的大量数据。
量子比特器件良率的提升,加上高通量的测试工艺,让英特尔的研究人员能够根据更多的数据分析均匀性,这是扩展量子计算机的重要一步。研究人员还发现,这些晶圆上的单电子器件在作为自旋量子比特运行时表现良好,门保真度达到了99.9%。就完全基于CMOS工艺制造的量子比特而言,这一保真度设立了业界领先水平。
自旋量子比特的尺寸较小,直径约为100纳米,因此密度高于其它类型的量子比特(如超导量子比特),从而能够在相同尺寸的芯片上构建更复杂的量子处理器。英特尔使用了极紫外光刻(EUV)技术实现小尺寸自旋量子比特芯片的大批量制造。
用数百万个均匀的量子比特实现容错量子计算机,需要高度可靠的制造工艺。凭借在晶体管制造领域丰富的专业积累,英特尔走在行业前沿,利用先进的300毫米CMOS制造技术打造硅自旋量子比特。300毫米CMOS制造技术通常能够在单个芯片上集成数十亿个晶体管。
在这些研究成果的基础上,英特尔希望继续取得进展,使用这些技术添加更多互连层,以制造具有更高量子比特数和更多连接的2D阵列,并在工业制造流程中实现高保真的双量子比特门(2-qubit gates)。在量子计算领域,英特尔未来的工作重点是通过下一代量子芯片继续扩展量子器件和实现性能提升。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。