英特尔在《自然》杂志上发表的研究展示了单电子控制下高保真度和均匀性的量子比特。
英特尔在《自然》杂志发表题为《检测300毫米自旋量子比特晶圆上的单电子器件》的研究论文,展示了领先的自旋量子比特均匀性、保真度和测量数据。这项研究为硅基量子处理器的量产和持续扩展(构建容错量子计算机的必要条件)奠定了基础。

英特尔打造的300毫米自旋量子比特晶圆
英特尔的量子硬件研究人员开发了一种300毫米低温检测工艺,使用互补金属氧化物半导体(CMOS)制造技术,在整个晶圆上收集有关自旋量子比特器件性能的大量数据。
量子比特器件良率的提升,加上高通量的测试工艺,让英特尔的研究人员能够根据更多的数据分析均匀性,这是扩展量子计算机的重要一步。研究人员还发现,这些晶圆上的单电子器件在作为自旋量子比特运行时表现良好,门保真度达到了99.9%。就完全基于CMOS工艺制造的量子比特而言,这一保真度设立了业界领先水平。
自旋量子比特的尺寸较小,直径约为100纳米,因此密度高于其它类型的量子比特(如超导量子比特),从而能够在相同尺寸的芯片上构建更复杂的量子处理器。英特尔使用了极紫外光刻(EUV)技术实现小尺寸自旋量子比特芯片的大批量制造。
用数百万个均匀的量子比特实现容错量子计算机,需要高度可靠的制造工艺。凭借在晶体管制造领域丰富的专业积累,英特尔走在行业前沿,利用先进的300毫米CMOS制造技术打造硅自旋量子比特。300毫米CMOS制造技术通常能够在单个芯片上集成数十亿个晶体管。
在这些研究成果的基础上,英特尔希望继续取得进展,使用这些技术添加更多互连层,以制造具有更高量子比特数和更多连接的2D阵列,并在工业制造流程中实现高保真的双量子比特门(2-qubit gates)。在量子计算领域,英特尔未来的工作重点是通过下一代量子芯片继续扩展量子器件和实现性能提升。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。