在Meta发布Llama 3大语言模型的第一时间,英特尔即优化并验证了80亿和700亿参数的Llama 3模型能够在英特尔AI产品组合上运行。在客户端领域,英特尔锐炫™显卡的强大性能让开发者能够轻松在本地运行Llama 3模型,为生成式AI工作负载提供加速。
在Llama 3模型的初步测试中,英特尔®酷睿™Ultra H系列处理器展现出了高于普通人阅读速度的输出生成性能,而这一结果主要得益于其内置的英特尔锐炫GPU,该GPU具有8个Xe核心,以及DP4a AI加速器和高达120 GB/s的系统内存带宽。
英特尔酷睿Ultra处理器和英特尔锐炫显卡在Llama 3模型发布的第一时间便提供了良好适配,这彰显了英特尔和Meta携手为本地AI开发和数百万设备的部署所做出的努力。英特尔客户端硬件性能的大幅提升得益于用于本地研发的PyTorch和英特尔® PyTorch扩展包等丰富的软件框架与工具,以及用于模型部署和推理的OpenVINO™工具包。
在内置英特尔锐炫显卡的英特尔酷睿 Ultra 7上运行Meta-Lama3-8B-Instruct
在英特尔锐炫A770上运行Llama 3的下一个Token延迟
上图展示了在搭配PyTorch框架和针对英特尔GPU的优化后,英特尔锐炫A770显卡在运行Llama 3模型时表现出卓越的性能。除此之外,英特尔锐炫显卡亦支持开发者在本地运行包括Mistral-7B-Instruct LLM、Phi2、Llama2等在内的大语言模型。
基于相同的基础安装,开发者可以在本地运行多种模型的主要原因,可以归功于IPEX-LLM,即一个针对PyTorch的大语言模型库。它主要基于英特尔® PyTorch扩展包打造,涵盖时下最新的大语言模型优化和低比特数据压缩(INT4/FP4/INT8/FP8),以及针对英特尔硬件的大多数最新性能优化。得益于如锐炫A系列显卡等英特尔独立显卡上的Xe核心XMX AI加速功能,IPEX-LLM能够显著提高性能,其支持在Windows子系统Linux版本2、原生Windows环境和原生Linux上的英特尔锐炫A系列显卡。
由于所有的操作和模型均基于原生PyTorch框架,开发者可以非常方便地更换或使用不同的PyTorch模型以及输入数据。而上述模型和数据不仅能够在英特尔锐炫显卡上运行,开发者亦能享受到英特尔锐炫显卡加速带来的性能提升。
英特尔®酷睿™Ultra处理器:
在英特尔酷睿Ultra 7 155H平台(MSI Prestige 16 AI Evo B1MG-005US)上进行测试,使用32GB LP5x 6400Mhz总内存,英特尔显卡驱动101.5382 WHQL,Windows 11 Pro版本22631.3447,平衡操作系统电源计划,最佳性能操作系统电源模式,极限性能MSI Center模式,已启用核心隔离,基于英特尔2024年4月17日的测试。
英特尔锐炫™A系列显卡:
在英特尔锐炫A770 16GB显卡上进行测试,使用英特尔酷睿 i9-14900K、华硕ROG MAXIMUS Z790 HERO主板、32GB(2x 16GB)DDR5 5600Mhz,Corsair MP600 Pro XT 4TB NVMe。软件配置包括英特尔显卡驱动101.5382 WHQL、Windows 11 Pro版本22631.3447、性能电源策略和核心隔离禁用。基于英特尔2024年4月17日的测试。
注释:
性能因使用情况、配置和其他因素而异。可在性能指数网站上了解更多信息。
性能结果基于所示日期的配置测试,可能不反映所有公开可用的更新。请参阅附件以了解配置详情。没有任何产品或组件可以绝对安全。
基于预生产系统和组件的结果,以及使用英特尔参考平台(内部新系统的内部示例)、英特尔内部分析或架构模拟或建模估算或模拟的结果,仅供参考。结果可能会因将来对任何系统、组件、规格或配置的更改而变化。
成本和结果可能会有所不同。
英特尔技术可能需要启用硬件、软件或服务进行激活。
好文章,需要你的鼓励
AWS在纽约峰会上发布Amazon Bedrock AgentCore,这是一个企业级AI代理构建、部署和运营平台。该平台支持开源框架如CrewAI、LangChain等,提供运行时、内存、身份管理、可观测性等核心服务。Box、巴西伊塔乌银行等企业已开始使用该平台构建生产级应用。平台采用按需付费模式,目前在部分AWS区域提供预览版,2025年9月16日前免费试用。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
网约车巨头Uber宣布与中国科技公司百度达成多年战略合作,计划在美国和中国以外地区推出数千辆自动驾驶出租车。服务将从今年晚些时候开始,首先在亚洲和中东的未指定国家推出。百度的Apollo自动驾驶汽车已在中国11个城市运营,成本仅为3.7万美元,远低于行业平均的20万美元。用户可选择乘坐自动驾驶车辆或人工驾驶车辆。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。