近日,Meta重磅推出其80亿和700亿参数的Meta Llama 3开源大模型。该模型引入了改进推理等新功能和更多的模型尺寸,并采用全新标记器(Tokenizer),旨在提升编码语言效率并提高模型性能。
在模型发布的第一时间,英特尔即验证了Llama 3能够在包括英特尔®至强®处理器在内的丰富AI产品组合上运行,并披露了即将发布的英特尔至强6性能核处理器(代号为Granite Rapids)针对Meta Llama 3模型的推理性能。
英特尔至强处理器可以满足要求严苛的端到端AI工作负载的需求。以第五代至强处理器为例,每个核心均内置了AMX加速引擎,能够提供出色的AI推理和训练性能。截至目前,该处理器已被众多主流云服务商所采用。不仅如此,至强处理器在进行通用计算时,能够提供更低时延,并能同时处理多种工作负载。
事实上,英特尔一直在持续优化至强平台的大模型推理性能。例如,相较于Llama 2模型的软件,PyTorch及英特尔® PyTorch扩展包(Intel® Extension for PyTorch)的延迟降低了5倍。这一优化是通过Paged Attention算法和张量并行实现的,这是因为其能够最大化可用算力及内存带宽。下图展示了80亿参数的Meta Lama 3模型在AWS m7i.metal-48x实例上的推理性能,该实例基于第四代英特尔至强可扩展处理器。

图1:AWS实例上Llama 3的下一个Token延迟
不仅如此,英特尔还首次披露了即将发布的产品——英特尔®至强® 6性能核处理器(代号为Granite Rapids)针对Meta Llama 3的性能测试。结果显示,与第四代至强处理器相比,英特尔至强6处理器在80亿参数的Llama 3推理模型的延迟降低了2倍,并且能够以低于100毫秒的token延迟,在单个双路服务器上运行诸如700亿参数的Llama 3这种更大参数的推理模型。

图2:基于英特尔®至强® 6性能核处理器(代号Granite Rapids)的Llama 3下一个Token延迟
考虑到Llama 3具备更高效的编码语言标记器(Tokenizer),测试采用了随机选择的prompt对Llama 3和Llama 2进行快速比较。在prompt相同的情况下,Llama 3所标记的token数量相较Llama 2减少18%。因此,即使80亿参数的Llama 3模型比70亿参数的Llama 2模型参数更高,在AWS m7i.metal-48xl实例上运行BF16推理时,整体prompt的推理时延几乎相同(该评估中,Llama 3比Llama 2快1.04倍)。
开发者可在此查阅在英特尔至强平台上运行Llama 3的说明。
英特尔至强处理器:
在英特尔®至强® 6处理器(此前代号Granite Rapids)上进行测试,使用2个英特尔®至强® Platinum,120核,超线程开启,睿频开启,NUMA 6,集成加速器可用[已使用]:DLB[8],DSA[8],IAA[8],QAT[8],总内存1536GB(24x64GB DDR5 8800 MT/s[8800 MT/s]),BIOS BHSDCRB1.IPC.0031.D44.2403292312,微码0x810001d0,1x以太网控制器I210千兆网络连接1x SSK存储953.9G,Red Hat Enterprise Linux 9.2(Plow),6.2.0-gn r.bkc.6.2.4.15.28.x86_64,基于英特尔2024年4月17日的测试。
在第四代英特尔®至强®可扩展处理器(此前代号Sapphire Rapids)上进行测试,使用AWS m7i.metal-48xl实例,2个英特尔®至强® Platinum 8488C,48核,超线程开启,睿频开启,NUMA 2,集成加速器可用[已使用]:DLB[8],DSA[8],IAA[8],QAT[8],总内存768GB(16x32GB DDR5 4800 MT/s[4400 MT/s]);(16x16GB DDR5 4800 MT/s[4400 MT/s]),BIOS亚马逊EC2,微码0x2b0000590,1x以太网控制器弹性网络适配器(ENA)亚马逊弹性块存储(EBS)256G,Ubuntu 22.04.4 LTS,6.5.0-1016-ws,基于英特尔2024年4月17日的测试。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。