作为英特尔首个神经元数量达到11.5亿的神经拟态系统,Hala Point为更高效、规模更大的AI开辟了道路。
英特尔发布了代号为Hala Point的大型神经拟态系统。Hala Point基于英特尔Loihi 2神经拟态处理器打造而成,旨在支持类脑AI领域的前沿研究,解决AI目前在效率和可持续性等方面的挑战。在英特尔第一代大规模研究系统Pohoiki Springs的基础上,Hala Point改进了架构,将神经元容量提高了10倍以上,性能提高了12倍。
英特尔研究院神经拟态计算实验室总监Mike Davies 表示:“目前,AI模型的算力成本正在持续上升。行业需要能够规模化的全新计算方法。为此,英特尔开发了Hala Point,将高效率的深度学习和新颖的类脑持续学习、优化能力结合起来。我们希望使用Hala Point的研究能够在大规模AI技术的效率和适应性上取得突破。”
Hala Point在主流AI工作负载上展现了出色的计算效率。研究显示,在运行传统深度神经网络时,该系统能够每秒完成多达2万万亿次(20 petaops)运算,8位运算能效比达到了15 TOPS/W,相当于甚至超过了基于GPU和CPU的架构。Hala Point有望推动多领域AI应用的实时持续学习,如科学研究、工程、物流、智能城市基础设施管理、大语言模型(LLMs)和AI助手(AI agents)。
目前,Hala Point是一个旨在改进未来商用系统的研究原型。英特尔预计其研究将带来实际技术突破,如让大语言模型拥有从新数据中持续学习的能力,从而有望在AI广泛部署的过程中,大幅降低训练能耗,提高可持续性。
深度学习模型的规模正在不断扩大,参数量可达万亿级。这一趋势意味着AI技术在可持续性上面临着严峻的挑战,有必要探索硬件架构底层的创新。神经拟态计算是一种借鉴神经科学研究的全新计算方法,通过存算一体和高细粒度的并行计算,大幅减少了数据传输。在本月举行的声学、语音与信号处理国际会议(ICASSP)上,英特尔发表的研究表明,Loihi 2在新兴的小规模边缘工作负载上实现了效率、速度和适应性数量级的提升。
Hala Point在其前身Pohoiki Springs的基础上实现了大幅提升,基于神经拟态计算技术提升了主流、常规深度学习模型的性能和效率,尤其是那些用于处理视频、语音和无线通信等实时工作负载的模型。例如,在今年的世界移动通信大会(MWC)上,爱立信研究院(Ericsson Research)就展示了其如何将 Loihi 2神经拟态处理器应用于电信基础设施效率的优化。
Hala Point基于神经拟态处理器Loihi 2打造,Loihi 2应用了众多类脑计算原理,如异步(asynchronous)、基于事件的脉冲神经网络(SNNs)、存算一体,以及不断变化的稀疏连接,以实现能效比和性能的数量级提升。神经元之间能够直接通信,而非通过内存通信,因此能降低整体功耗。
Hala Point系统由封装在一个六机架的数据中心机箱中的1152个Loihi 2处理器(采用Intel 4制程节点)组成,大小相当于一个微波炉。该系统支持分布在 140544 个神经形态处理内核上的多达 11.5 亿个神经元和 1280 亿个突触,最大功耗仅为 2600 瓦。Hala Point还包括 2300 多个嵌入式 x86 处理器,用于辅助计算。
在大规模的并行结构中,Hala Point集成了处理器、内存和通信通道,内存带宽达每秒16PB,内核间的通信带宽达每秒3.5 PB,芯片间的通信带宽达每秒5TB。该系统每秒可处理超过380万亿次8位突触运算和超过240万亿次神经元运算。
在用于仿生脉冲神经网络模型时,Hala Point能够以比人脑快20倍的实时速度运行其全部11.5亿个神经元,在运行神经元数量较低的情况下,速度可比人脑快200倍。虽然Hala Point并非用于神经科学建模,但其神经元容量大致相当于猫头鹰的大脑或卷尾猴的大脑皮层。
在执行AI推理负载和处理优化问题时, Loihi 2神经拟态芯片系统的速度比常规CPU和GPU架构快50倍,同时能耗降低了100倍。早期研究结果表明,通过利用稀疏性高达10比1的稀疏连接(sparse connectivity)和事件驱动的活动,Hala Point运行深度神经网络的能效比高达15 TOPS/W,同时无需对输入数据进行批处理。批处理是一种常用于GPU的优化方法,会大幅增加实时数据(如来自摄像头的视频)处理的延迟。尽管仍处于研究阶段,但未来的神经拟态大语言模型将不再需要定期在不断增长的数据集上再训练,从而节约数千兆瓦时的能源。
世界各地领先的学术团体、研究机构和公司共同组成了英特尔神经拟态研究社区(INRC),成员总数超过200个。携手英特尔神经拟态研究社区,英特尔正致力于开拓类脑AI前沿技术,以将其从技术原型转化为业界领先的产品。
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。