近日,MLCommons公布了针对AI推理的MLPerf v4.0基准测试结果。与第四代至强在MLPerf推理v3.1基准测试中的结果相比,第五代至强的测试结果平均提升1.42倍。
其中,针对具备连续批处理(continuous batching)等软件优化的GPT-J模型,与v3.1的测试结果相比,第五代至强的性能提升约1.8倍;同样,得益于MergedEmbeddingBag以及基于英特尔AMX的其他优化,DLRMv2的测试结果显示出约1.8倍的性能提升和99.9的准确率。
与此同时,英特尔非常自豪地与包括思科、戴尔、广达、Supermicro和纬颖科技在内的广大OEM伙伴们展开合作,助力其提交基于自身产品的MLPerf测试结果。英特尔不仅于2020年开始提交基于第四代至强的测试结果,同时至强可扩展处理器亦是参与MLPerf测试的产品中,众多加速器的主机CPU。
此外,第五代至强可在英特尔®开发者云平台上进行评估。该环境中,用户可以进行小型及大规模AI训练(譬如大语言模型或生成式AI)、运行大规模的推理工作负载,以及管理AI计算资源等。
截至目前,英特尔仍是唯一一家提交MLPerf测试结果的CPU厂商。英特尔产品迄今为止在多轮MLPerf基准测试中均所展示出领先的训练及推理性能,该测试结果亦为客户树立了可用于评估产品AI性能的行业标准。
之所以能取得这样的成绩,得益于英特尔®高级矩阵扩展(英特尔® AMX),这也彰显了英特尔致力于通过丰富且具有竞争力的解决方案推动 “AI无处不在”的承诺。
英特尔公司副总裁兼数据中心与人工智能事业部产品管理总经理Zane Ball表示:“我们将持续提升CPU和加速器等广泛产品组合在行业基准测试中的AI性能。此次全新的MLCommons结果显示,我们提供的AI解决方案能够满足客户不断变化、多样化的AI需求。同时,至强处理器也为客户提供了可快速实现AI部署,且极具性价比的选择。”
第五代英特尔®至强®可扩展处理器
好文章,需要你的鼓励
许多组织在实施 AI 代理时过于狭隘地关注单一决策模型,陷入了"一刀切"决策框架的误区。然而,人类决策远非统一,而是复杂、动态且依赖于具体情境的。如果要将 AI 代理有效整合到组织中,就需要考虑多样化的决策过程,以确保有效实施,避免无意中设定一个低标准的决策模式。
Google 近期加快了 AI 模型的发布节奏,推出了业界领先的 Gemini 2.5 Pro 和 Gemini 2.0 Flash。然而,公司尚未发布这些新模型的安全报告,引发了对透明度的担忧。Google 表示正在权衡快速迭代和获取反馈的方式,承诺未来会发布更多文档,但专家认为这种做法可能会树立不良先例。
AI视频生成公司Runway宣布完成3.08亿美元融资,由General Atlantic领投,估值超30亿美元。公司刚发布新一代视频生成模型Gen-4,可生成长达10秒的视频片段。Runway计划利用新资金加强AI开发,重点提升训练数据集质量和扩展扩散模型与大语言模型能力。
亚马逊推出Nova Act AI代理SDK,这是一个用于构建可自主完成网络任务的AI代理的开发工具包。它由亚马逊自研的Nova大语言模型驱动,采用细粒度任务分解和直接浏览器操作等方法,旨在提高AI代理的可靠性。该SDK开源,但仅支持亚马逊Nova模型。这标志着亚马逊在AI代理领域向OpenAI、微软等竞争对手发起挑战。