近日,MLCommons公布了针对AI推理的MLPerf v4.0基准测试结果。与第四代至强在MLPerf推理v3.1基准测试中的结果相比,第五代至强的测试结果平均提升1.42倍。
其中,针对具备连续批处理(continuous batching)等软件优化的GPT-J模型,与v3.1的测试结果相比,第五代至强的性能提升约1.8倍;同样,得益于MergedEmbeddingBag以及基于英特尔AMX的其他优化,DLRMv2的测试结果显示出约1.8倍的性能提升和99.9的准确率。
与此同时,英特尔非常自豪地与包括思科、戴尔、广达、Supermicro和纬颖科技在内的广大OEM伙伴们展开合作,助力其提交基于自身产品的MLPerf测试结果。英特尔不仅于2020年开始提交基于第四代至强的测试结果,同时至强可扩展处理器亦是参与MLPerf测试的产品中,众多加速器的主机CPU。
此外,第五代至强可在英特尔®开发者云平台上进行评估。该环境中,用户可以进行小型及大规模AI训练(譬如大语言模型或生成式AI)、运行大规模的推理工作负载,以及管理AI计算资源等。
截至目前,英特尔仍是唯一一家提交MLPerf测试结果的CPU厂商。英特尔产品迄今为止在多轮MLPerf基准测试中均所展示出领先的训练及推理性能,该测试结果亦为客户树立了可用于评估产品AI性能的行业标准。
之所以能取得这样的成绩,得益于英特尔®高级矩阵扩展(英特尔® AMX),这也彰显了英特尔致力于通过丰富且具有竞争力的解决方案推动 “AI无处不在”的承诺。
英特尔公司副总裁兼数据中心与人工智能事业部产品管理总经理Zane Ball表示:“我们将持续提升CPU和加速器等广泛产品组合在行业基准测试中的AI性能。此次全新的MLCommons结果显示,我们提供的AI解决方案能够满足客户不断变化、多样化的AI需求。同时,至强处理器也为客户提供了可快速实现AI部署,且极具性价比的选择。”

第五代英特尔®至强®可扩展处理器
好文章,需要你的鼓励
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
清华团队开发DKT模型,利用视频扩散AI技术成功解决透明物体深度估计难题。该研究创建了首个透明物体视频数据集TransPhy3D,通过改造预训练视频生成模型,实现了准确的透明物体深度和法向量估计。在机器人抓取实验中,DKT将成功率提升至73%,为智能系统处理复杂视觉场景开辟新路径。
2026年Linux将迎来重大发展机遇。AI将在Linux开发中发挥更大作用,但不会像Windows那样完全重写代码。随着微软持续向用户强推AI功能,更多Windows用户将转向Linux桌面。Rust已正式成为Linux核心语言,提升内存安全性。不可变Linux发行版因其安全性和稳定性获得企业青睐。开源供应链安全将通过SBOM等标准得到加强。然而Firefox因强推AI功能遭用户强烈反对,市场份额跌至1.7%,可能面临消亡危机。
字节跳动研究团队提出了专家-路由器耦合损失方法,解决混合专家模型中路由器无法准确理解专家能力的问题。该方法通过让每个专家对其代表性任务产生最强响应,同时确保代表性任务在对应专家处获得最佳处理,建立了专家与路由器的紧密联系。实验表明该方法显著提升了从30亿到150亿参数模型的性能,训练开销仅增加0.2%-0.8%,为混合专家模型优化提供了高效实用的解决方案。