近日,MLCommons公布了针对AI模型训练的行业标准MLPerf训练v3.1基准测试结果。
作为唯一提交MLPerf测试结果的CPU,第四代英特尔至强可扩展处理器在测试中展现出强大的性能。
本次,英特尔提交了ResNet50、RetinaNet、BERT和DLRM dcnv2的测试结果。值得注意的是,在DLRM dcnv2这一个新提交的测试模型中,第四代英特尔至强可扩展处理器仅使用四个节点就在227分钟内完成了训练。
在分别于今年6月、9月和11月进行的三次测试中,英特尔提交了基于第四代英特尔至强可扩展处理器的多个推理基准测试,结果显示,包括视觉、语言处理、语音和音频翻译模型,以及更大的DLRM v2深度学习推荐模型及60亿参数大语言模型及计算机视觉与自然语言处理模型ChatGPT-J在内,第四代英特尔至强处理器对于通用AI工作负载拥有出色的性能。
持续进化的CPU
毋庸讳言,GPU在AI工作负载的优势十分明显,但是这并不代表CPU就此甘拜下风。
为了让CPU更好地运行AI应用,英特尔对于至强处理器进行了积极改进。
比如内置英特尔高级矩阵扩展(英特尔AMX)加速引擎,第四代英特尔至强可扩展处理器支持INT8和BF16两种数据类型。与前几代产品相比,本代产品可实现高达5.7至10倍的实时推理性能提升和高达3.5至10倍的训练性能提升。
在于百度智能云9月发布的新一代云服务器BCC实例中,第四代至强可扩展处理器以AMX加速器扩展AI算力,从而使百度智能云用户在任何实例上轻松获取原生的强大AI能力。
得益于英特尔AMX指令集针对矩阵运算的强大加速能力,腾讯BERT模型BF16吞吐量获得大幅提升,从而有效地优化了其AI用户的终端体验。
通过AMX INT8及BF16的不同精度数据处理、AVX-512的深入调优,以及英特尔软件的加持,阿里云地址标准化业务和淘宝搜索的定制化推荐业务实现了大幅性能提升。
与此同时,第四代英特尔至强可扩展处理器亦助力亚信、用友、金蝶和东软等独立软件服务商实现在OCR等领域的多项业务升级,助力其成功应对来自不同应用场景的多样化AI工作负载需求。
截止目前,第四代至强可扩展处理器已出货一百万片。而代号为Emerald Rapids的第五代英特尔至强可扩展处理器也将于今年第四季度发布。
作为英特尔至强的重要演进,下一代平台引入了全新的能效核(E-core)架构,与其已有的性能核(P-core)架构并存。分别以代号Sierra Forest和Granite Rapids命名的这些新产品将为客户提供便捷性和灵活性,以及兼容的硬件架构和共享的软件堆栈,以满足诸如人工智能等关键工作负载的多元化需求。
代号为Sierra Forest的能效核英特尔至强可扩展处理器,计划将于2024年上半年交付,而代号为Granite Rapids的性能核英特尔至强可扩展处理器也将紧随其后。
好文章,需要你的鼓励
Jabra 推出 PanaCast 40 VBS:首款专为小会议室设计的 180° Android 智能音视频一体机
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。