英特尔产品在全新MLCommons AI推理性能测试中尽显优势
今日,MLCommons公布针对 60 亿参数大语言模型及计算机视觉与自然语言处理模型GPT-J的 MLPerf推理v3.1 性能基准测试结果,其中包括英特尔所提交的基于Habana® Gaudi®2 加速器、第四代英特尔®至强®可扩展处理器,以及英特尔®至强® CPU Max 系列的测试结果。该结果显示了英特尔在AI推理方面极具竞争力的表现,并进一步加强了其对加速从云到网络到边缘再到端的工作负载中大规模部署AI的承诺。
英特尔执行副总裁兼数据中心与人工智能事业部总经理Sandra Rivera表示:“正如最新的 MLCommons结果显示,我们拥有强大的、具有竞争力的人工智能产品组合以满足客户对高性能、高效率的深度学习推理及训练的需求,同时,针对各种规模的人工智能模型,英特尔产品组合均具有领先的性价比优势。”
根据6月披露的MLCommons AI训练结果和Hugging Face性能基准测试验证,Gaudi2 在先进的视觉语言模型上拥有卓越的性能,而今天的结果进一步证明了英特尔能够提供满足AI计算需求的绝佳解决方案。
考虑到客户的个性化需求,英特尔正在通过能够帮助解决AI工作负载中推理与训练问题的产品,让AI无处不在。英特尔的AI产品为客户提供了可根据各自性能、效率及目标成本进行灵活匹配以获取最佳AI解决方案的理想选择,同时亦帮助客户开放生态系统。
关于Habana Gaudi2的测试结果:
Habana Gaudi2 在GPT-J模型上的推理结果强有力地验证了其具有竞争力的性能。
随着每6-8周公布的 Gaudi2 软件更新,英特尔将继续在 MLPerf 基准测试中展现其产品的性能提升,以及持续扩大的模型覆盖范围。
Habana Gaudi2 在GPT-J模型上的推理结果验证了其具有竞争力的性能
关于第四代至强可扩展处理器的测试结果:
英特尔提交了基于第四代英特尔至强可扩展处理器的7个推理基准测试,其中包括GPT-J模型。结果显示,包括视觉、语言处理、语音和音频翻译模型,以及更大的 DLRM v2 深度学习推荐模型及ChatGPT-J 模型在内,第四代至强处理器对于通用 AI 工作负载拥有出色的性能。此外,截至目前,英特尔仍是唯一一家使用行业标准的深度学习生态系统软件提交公开 CPU 结果的厂商。
第四代至强可扩展处理器是构建及部署通用AI工作负载的理想选择
MLPerf 是业内享有盛名的 AI 性能基准测试,旨在实现公平、可重复的产品性能比较。英特尔计划为下一个 MLPerf测试提交新的AI训练性能结果。持续的性能更新彰显了英特尔致力于帮助客户、助力AI技术演进所迈出的每一步,无论是低成本的AI处理器,还是面向网络、云和企业用户的高性能AI硬件加速器或是 GPU。
好文章,需要你的鼓励
Carma Technology 针对 Uber 提起专利侵权诉讼,称其侵犯了涉及拼车系统的五项专利。案情回溯至十年前,凸显专利保护对创新者的重要性,可能对 Uber 及其他公司带来巨大影响。
这项研究展示了如何通过在经济问题上进行后训练,让大语言模型像经济学家一样思考,从而实现战略性泛化能力。研究团队开发了名为Recon的7B参数开源模型,通过在2,100个高质量经济推理问题上进行监督微调和强化学习,不仅提升了模型在经济基准测试上的表现,更重要的是让模型在从未直接训练过的多智能体博弈中展现出合理的战略行为。结果表明,领域对齐的后训练可以作为智能体对齐的可扩展路径,通过结构化推理问题培养出更广泛适用的理性决策能力。
经过暂停战略调整,Automattic 宣布重返 WordPress 开发,包括核心、Gutenberg、Playground 等模块,计划今年推出 6.9 版本,并涉及与 WP Engine 的法律争端。
STORM框架是一种创新的对话系统研究方法,通过模拟用户和AI助手之间的信息不对称来解决意图触发性问题。研究发现中等程度的不确定性(40-60%未知信息)在某些情况下能够优于完全透明,挑战了传统的AI设计假设。通过对四种主流语言模型的测试,团队确定了不同模型在处理用户意图形成过程中的独特特点,为任务导向对话系统设计提供了实用指导。这项研究对隐私保护设计和偏见缓解具有重要启示,表明信息的战略性限制可能比信息最大化更有效。