英特尔产品在全新MLCommons AI推理性能测试中尽显优势
今日,MLCommons公布针对 60 亿参数大语言模型及计算机视觉与自然语言处理模型GPT-J的 MLPerf推理v3.1 性能基准测试结果,其中包括英特尔所提交的基于Habana® Gaudi®2 加速器、第四代英特尔®至强®可扩展处理器,以及英特尔®至强® CPU Max 系列的测试结果。该结果显示了英特尔在AI推理方面极具竞争力的表现,并进一步加强了其对加速从云到网络到边缘再到端的工作负载中大规模部署AI的承诺。
英特尔执行副总裁兼数据中心与人工智能事业部总经理Sandra Rivera表示:“正如最新的 MLCommons结果显示,我们拥有强大的、具有竞争力的人工智能产品组合以满足客户对高性能、高效率的深度学习推理及训练的需求,同时,针对各种规模的人工智能模型,英特尔产品组合均具有领先的性价比优势。”
根据6月披露的MLCommons AI训练结果和Hugging Face性能基准测试验证,Gaudi2 在先进的视觉语言模型上拥有卓越的性能,而今天的结果进一步证明了英特尔能够提供满足AI计算需求的绝佳解决方案。
考虑到客户的个性化需求,英特尔正在通过能够帮助解决AI工作负载中推理与训练问题的产品,让AI无处不在。英特尔的AI产品为客户提供了可根据各自性能、效率及目标成本进行灵活匹配以获取最佳AI解决方案的理想选择,同时亦帮助客户开放生态系统。
关于Habana Gaudi2的测试结果:
Habana Gaudi2 在GPT-J模型上的推理结果强有力地验证了其具有竞争力的性能。
随着每6-8周公布的 Gaudi2 软件更新,英特尔将继续在 MLPerf 基准测试中展现其产品的性能提升,以及持续扩大的模型覆盖范围。

Habana Gaudi2 在GPT-J模型上的推理结果验证了其具有竞争力的性能
关于第四代至强可扩展处理器的测试结果:
英特尔提交了基于第四代英特尔至强可扩展处理器的7个推理基准测试,其中包括GPT-J模型。结果显示,包括视觉、语言处理、语音和音频翻译模型,以及更大的 DLRM v2 深度学习推荐模型及ChatGPT-J 模型在内,第四代至强处理器对于通用 AI 工作负载拥有出色的性能。此外,截至目前,英特尔仍是唯一一家使用行业标准的深度学习生态系统软件提交公开 CPU 结果的厂商。

第四代至强可扩展处理器是构建及部署通用AI工作负载的理想选择
MLPerf 是业内享有盛名的 AI 性能基准测试,旨在实现公平、可重复的产品性能比较。英特尔计划为下一个 MLPerf测试提交新的AI训练性能结果。持续的性能更新彰显了英特尔致力于帮助客户、助力AI技术演进所迈出的每一步,无论是低成本的AI处理器,还是面向网络、云和企业用户的高性能AI硬件加速器或是 GPU。
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。