说到大模型,算力稀缺是不可回避的问题。当大家都在抢购英伟达的GPU的时候,在缺货的等待期,我们不妨尝试其他产品。
就在今天MLCommons刚刚公布的MLPerf推理v3.1性能基准测试结果显示,英特尔Habana Gaudi2加速器、第四代英特尔至强可扩展处理器,以及英特尔至强CPU Max在AI推理方面表现出色。
我们看下具体的成绩:
用于测试的是60亿参数大语言模型及计算机视觉与自然语言处理模型GPT-J。Habana Gaudi2在GPT-J模型上的推理结果强有力地验证了其具有竞争力的性能。
英特尔提交了基于第四代英特尔至强可扩展处理器的7个推理基准测试,其中包括GPT-J模型。对于GPT-J对约1000-1500字新闻稿进行100字总结的任务,第四代至强可扩展处理器可在离线模式下完成每秒两段的总结提要,在实时服务器模式下完成每秒一段的总结提要。
英特尔首次提交了英特尔至强CPU Max系列的MLPerf 结果,该系列可提供高达64GB的高带宽内存。对于GPT-J而言,它是仅有的能够达到99.9%准确度的CPU,这对于对精度要求极高的应用来说至关重要。
除了这次AI推理的测试结构,根据6月披露的MLCommons AI训练结果和Hugging Face性能基准测试验证,Gaudi2在先进的视觉语言模型上,性能可以超越英伟达的H100处理器。
所以,从测试成绩看,Gaudi2与至强可扩展处理器完全可以用于深度学习推理及训练,加速人工智能模型。
其实Gaudi2与至强可扩展处理器之所以能够取得如此的成绩,主要是还是产品针对人工智能工作负载进行优化。比如Gaudi2集成了24个可编程Tensor处理器核心(TPCs),配置21个Gbps以太网接口,内存和缓存提高到96GB HBM2e和48MB SRAM,内存带宽升为2.4TB/s等。
在测试GPT-3时,Gaudi 2表现出了强劲性能,在384个加速器上训练时间达311分钟,从256个加速器到384个加速器实现了近线性95%的扩展。这使得Gaudi 2是除了英伟达产品外,唯一能把MLPerf GPT 3.0模型跑起来的芯片。
Gaudi 2作为一款专用AI加速芯片,相比英伟达的通用GPU A100和H100,其服务器成本更低,价格优势也更为明显。
第四代英特尔至强可扩展处理器最重要的特性之一,是新的AMX人工智能加速引擎,与上一代相比,它可以提供高达10倍的人工智能推理和训练性能提升,支持大多数大型AI模型,包括实时、中等吞吐量、低延迟稀疏推理,以及中、小型规模的训练和边缘推理。
MLPerf是业内享有盛名的AI性能基准测试,旨在实现公平、可重复的产品性能比较。这有助于企业基于测试成绩进行采购指南。
好文章,需要你的鼓励
腾讯今日开源混元MT系列语言模型,专门针对翻译任务进行优化。该系列包含四个模型,其中两个旗舰模型均拥有70亿参数。腾讯使用四个不同数据集进行初始训练,并采用强化学习进行优化。在WMT25基准测试中,混元MT在31个语言对中的30个表现优于谷歌翻译,某些情况下得分高出65%,同时也超越了GPT-4.1和Claude 4 Sonnet等模型。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
今年是Frontiers Health十周年。在pharmaphorum播客的Frontiers Health限定系列中,网络编辑Nicole Raleigh采访了Startup Health总裁兼联合创始人Unity Stoakes。Stoakes在科技、科学和设计交汇领域深耕30多年,致力于变革全球健康。他认为,Frontiers Health通过精心选择的空间促进有意义的网络建设,利用网络效应推进创新力量,让企业家共同构建并带来改变,从而有益地影响全球人类福祉。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。