说到大模型,算力稀缺是不可回避的问题。当大家都在抢购英伟达的GPU的时候,在缺货的等待期,我们不妨尝试其他产品。
就在今天MLCommons刚刚公布的MLPerf推理v3.1性能基准测试结果显示,英特尔Habana Gaudi2加速器、第四代英特尔至强可扩展处理器,以及英特尔至强CPU Max在AI推理方面表现出色。
我们看下具体的成绩:
用于测试的是60亿参数大语言模型及计算机视觉与自然语言处理模型GPT-J。Habana Gaudi2在GPT-J模型上的推理结果强有力地验证了其具有竞争力的性能。
英特尔提交了基于第四代英特尔至强可扩展处理器的7个推理基准测试,其中包括GPT-J模型。对于GPT-J对约1000-1500字新闻稿进行100字总结的任务,第四代至强可扩展处理器可在离线模式下完成每秒两段的总结提要,在实时服务器模式下完成每秒一段的总结提要。
英特尔首次提交了英特尔至强CPU Max系列的MLPerf 结果,该系列可提供高达64GB的高带宽内存。对于GPT-J而言,它是仅有的能够达到99.9%准确度的CPU,这对于对精度要求极高的应用来说至关重要。
除了这次AI推理的测试结构,根据6月披露的MLCommons AI训练结果和Hugging Face性能基准测试验证,Gaudi2在先进的视觉语言模型上,性能可以超越英伟达的H100处理器。
所以,从测试成绩看,Gaudi2与至强可扩展处理器完全可以用于深度学习推理及训练,加速人工智能模型。
其实Gaudi2与至强可扩展处理器之所以能够取得如此的成绩,主要是还是产品针对人工智能工作负载进行优化。比如Gaudi2集成了24个可编程Tensor处理器核心(TPCs),配置21个Gbps以太网接口,内存和缓存提高到96GB HBM2e和48MB SRAM,内存带宽升为2.4TB/s等。
在测试GPT-3时,Gaudi 2表现出了强劲性能,在384个加速器上训练时间达311分钟,从256个加速器到384个加速器实现了近线性95%的扩展。这使得Gaudi 2是除了英伟达产品外,唯一能把MLPerf GPT 3.0模型跑起来的芯片。

Gaudi 2作为一款专用AI加速芯片,相比英伟达的通用GPU A100和H100,其服务器成本更低,价格优势也更为明显。

第四代英特尔至强可扩展处理器最重要的特性之一,是新的AMX人工智能加速引擎,与上一代相比,它可以提供高达10倍的人工智能推理和训练性能提升,支持大多数大型AI模型,包括实时、中等吞吐量、低延迟稀疏推理,以及中、小型规模的训练和边缘推理。
MLPerf是业内享有盛名的AI性能基准测试,旨在实现公平、可重复的产品性能比较。这有助于企业基于测试成绩进行采购指南。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。