聚焦政策监管,完善顶层设计
近年来,为深入推进生态文明建设,我国相继出台了一系列绿色金融政策、标准,不断完善顶层设计,引领我国绿色金融快速健康发展。自“双碳”目标提出以来,监管政策接连密集出台。
2021年4月,央行等三部门联合发布《绿色债券支持项目目录(2021年版)》;
2021年7月1日起,《银行业金融机构绿色金融评价方案》正式施行;
2022年6月,银保监会印发《银行业保险业绿色金融指引》;
2022年11月,《数据中心能效限定值及能效等级》开始实施,进一步推动各项绿色金融政策落地见效。

落地节能目标,技术难点待解
数据中心是现代银行信息化的基础设施,也是银行业落实“双碳”的主要着力点。
在数据中心能耗构成中,制冷能耗占比40%左右,是实现绿色数据中心的关键环节。
然而,随着设备集成化程度越来越高,设备数量不断增加,数据中心发热量也随之提升,对制冷提出了更高的要求。这也导致数据中心制冷节能面临挑战。对于金融领域存量数据中心来说,针对制冷系统实施有效的节能改造是顺应国家监管趋势,实现节能目标的一个重要途径。

紧跟政策导向,探索创新实践
自2021年以来,深圳农商银行根据国家有关部委及监管单位关于数据中心节能减排相关政策文件的精神,持续密切关注金融领域节能新技术的发展,特别是在数据中心节能减排建设与绿色运维方面,积极尝试探索既满足政策要求,又符合行业特点与自身长期发展需求的金融机构数据中心绿色节能方案,并付诸实践。
立足行业特点,深挖绿色潜力
深圳农商银行罗湖数据中心是行业内通过中国质量认证中心(CQC)A级认证的机房之一,供电采用独立双母线2N配电系统架构,制冷采用“风冷下送风定频精密空调系统+封闭冷通道”模式。
整体设计理念极具城市商业银行数据中心特点,配套硬件设施以追求安全可靠为目标,硬件与资源配比充分冗余,同时兼顾功能完备与可持续发展,具有较高的绿色节能升级潜力。
发挥科技优势,落地节能升级
为了响应国家号召,提升数据中心绿色水平,深圳农商银行运维团队通过收集数据中心历年运行数据,形成能耗数据资源池,在深入分析比对能耗结构特点后,最终选择了能耗因子较高的精密空调系统进行绿色升级。
升级方案因地制宜,在比较了间接蒸发冷却、自然冷却、重力热管、风冷变频氟泵等节能方案后,结合安全性、节能性、经济性、实施难度、改造周期等因素,最终与精密空调制造商维谛技术有限公司共同确定了全系统变频升级方案。
精密空调能够根据数据中心当前的热负荷,实时智能调节压缩机功率,有效改善了精密空调压缩机频繁启停带来的冷通道温度波动和能耗较高等一系列问题。

运用科学管理,保障安全生产
在实践过程中,深圳农商银行运维团队采用科学的管理方式,保障在用生产机房持续安全运行。
在实施前,反复论证方案细节,对各环节制定妥善的施工步骤、全封闭隔离保护措施与针对性的应急保障预案;在实施过程中,严格执行预定方案,有序稳步实施,全过程机房冷通道温度保持在21℃~23℃之间,基础环境持续平稳,业务连续性得到有效保障。
达到节能效果,实现能效跃升
从升级后的实际效果来看,深圳农商银行罗湖数据中心PUE值从1.89下降至平均1.55,最低至1.52,空调能耗因子从0.527下降至0.309。
在IT负载不变的情况下,实现每年节能不小于70.4万千瓦时的节能效果,节能率约39.8%,并且经过项目持续调优的预估分析,PUE仍向着“2025年达到1.5以内”的目标不断下降,真正实现节能减排、降本增效的双赢目标。
树立标杆示范,引领绿色发展
相关机构对城市商业银行数据中心机房的数据调研发现,多数设计为传统方案,设备间智能协同程度不高,采用独立机柜加定频空调,导致PUE值普遍高于2.0,部分银行机房的PUE值甚至高达2.6,远高于国家政策对老旧机房减碳要求的阈值。
此次深圳农商银行数据中心绿色节能升级,运用了先进的技术理念与科学的管理手段,技术方案具有性价比高、用时少、成果显著等特点,为深圳农商银行科技战略提供了坚实的绿色动力基础,在赋能业务发展的同时为业界提供了成功范例,共同推动数据中心向更绿色、更低能耗且可持续的方向发展。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。