当前,我们正处在数据中心行业的关键时刻。根据 McKinsey & Company 的报告,2023 年至 2030 年间,AI 就绪数据中心的需求容量预计将以年均 33% 的速度增长。
面对如此规模和速度的增长,数据中心运营商正在应对前所未有的供电和散热需求,以支持加速计算带来的更高功率密度要求。这些挑战正推动创新,以缓解密集部署的 AI 服务器在不断提高的热设计功率 (TDP) 要求下产生的热量。
作为从业者,我多年来一直与超大规模、企业、通信和半导体客户合作,解决各种技术、业务和运营挑战。从我的角度来看,解决数据中心扩张带来的散热和供电挑战的答案在于一项关键技术——芯片直接液冷。
液冷相较传统方法的优势
我并不是唯一一个强调液冷对行业规模化计算和提高能效重要性的人。Uptime Institute 2023 年冷却系统调查发现,到本十年末,直接液冷预计将超过风冷,成为冷却 IT 基础设施的主要方法。
这是因为 AI 和高性能计算工作负载需要更高功率要求的处理器和 AI 加速器,而这些 AI 服务器产生的热量可能会成为问题,因为传统的冷却系统(如风冷)难以维持最佳温度。这可能导致效率低下、能耗增加,甚至硬件故障等重大问题。
与其他方法相比,液冷具有诸多优势,包括:
增强冷却效率:比风冷更有效地维持较低温度,并在电路板和机架层面降低热量,这对于高性能计算环境至关重要,因为即使温度略微上升也会导致性能下降。
空间优化:通过芯片直接液冷能够为更密集的服务器提供冷却。
节能:最大限度地减少传统低效风冷方法所需的大型空调系统。
更高可靠性:更稳定的冷却可防止热节流,保护硬件组件并延长其使用寿命。
可扩展性:液冷系统设计可适应 AI 和其他技术持续发展带来的未来增长。
单相液冷的不同方法
液冷有多种技术方法,从芯片直接液冷到机架级热交换器和浸没式冷却。微对流技术就是一个独特方法的例子,它可以在 GPU 和 CPU 的热点处精确冷却液体,以缓解热量并提高性能和可靠性。
与风冷相比,这种方法将散热性能提高了 82%,将客户功耗降低了 15%,并将用水量减少了 92%。与其他微通道液冷方法相比,这种技术设计通过消除微通道或风冷散热器中常见的热梯度,实现了高达 40% 的较低热阻。
通过先进的数据中心冷却技术实现规模化发展
在我们应对 AI 时代复杂性的过程中,先进的冷却系统对数据中心的可持续扩张至关重要。为 AI 数据中心未来做准备意味着确保它们具备能够处理急剧增加的热负载和热通量的解决方案。
液冷是解决许多供电和散热挑战的突出方案。结合全球制造、供应链和循环经济服务,我们可以确保行业通过广泛部署这些功能来满足当前和未来的需求规模。
好文章,需要你的鼓励
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AI虽具备变革企业洞察力的潜力,但成功依赖于数据质量。大多数AI项目失败源于数据混乱分散而非算法局限。谷歌BigQuery云数据AI平台打破数据孤岛,简化治理,加速企业AI应用。通过AI自动化数据处理,实现实时分析,并与Vertex AI深度集成,使企业能够高效处理结构化和非结构化数据,将智能商业转型从愿景变为现实。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。