提升 SmoothQuant 量化方法的效力
作者:英特尔公司 陆崟彤、何欣、郭恒、程文华、王畅、王梦妮、沈海豪
本文介绍了可提升大语言模型的训练后量化表现的增强型 SmoothQuant 技术,说明了这项技术的用法,并证明了其在准确率方面的优势。此方法已整合至英特尔® Neural Compressor(1) 中。英特尔® Neural Compressor 是一个包含量化、剪枝(稀疏性)、蒸馏(知识提炼)和神经架构搜索等多种常用模型压缩技术的开源 Python 库。目前,诸如 TensorFlow、英特尔® Extension for TensorFlow(2) 、PyTorch、英特尔® Extension for PyTorch(3) 、ONNX Runtime 和 MXNet等主流框架,都能与之兼容。
英特尔® Neural Compressor 已经支持多款英特尔® 架构的硬件,比如英特尔® 至强® 可扩展处理器(4) 、英特尔® 至强® CPU Max 系列(5) 、英特尔® 数据中心 GPU Flex 系列(6) 和英特尔® 数据中心 GPU Max 系列(7) 。本文涉及的实验基于第四代英特® 至强® 可扩展处理器(8) 进行。
大语言模型
大语言模型 (Large Language Model, LLM) 需基于海量数据集进行训练,可能拥有数十亿权重参数。其先进的网络结构和庞大的参数量,使它们能够很好地应对自然语言本身的复杂性。完成训练后的大语言模型,可针对各种下游的自然语言处理 (NLP) 和自然语言生成 (NLG) 任务进行调优,让其更适合对话式聊天机器人(如 ChatGPT)、机器翻译、文本分类、欺诈检测和情感分析等任务场景。
大语言模型部署面临的挑战
大语言模型在执行自然语言处理和自然语言生成任务方面表现出色,但其训练和部署颇为复杂,主要面临以下挑战:
因此,采用训练后量化的方法来为大语言模型瘦身,对于实现低时延推理至关重要。
大语言模型的量化
量化是一种常见的压缩操作,可以减少模型占用的内存空间,提高推理性能。采用量化方法可以降低大语言模型部署的难度。具体来说,量化是将浮点矩阵转换为整数矩阵:
其中 X_fp32、S 和 Z 分别为输入矩阵、比例因子和整数零点。
有关每通道 (per-channel) 量化策略虽然可能会减少量化损失,但不能用于激活值量化的原因,请参看 SmoothQuant 相关文档(10) 。不过,激活值量化误差损失却是导致模型量化准确率下降的重要因素。为此,人们提出了很多方法来降低激活值量化损失,例如:SPIQ(11) 、Outlier Suppression(12) 和 SmoothQuant(13) 。这三种方法思路相似,即把激活值量化的难度转移到权重量化上,只是三者在转移难度的多少上有所不同。
增强型 SmoothQuant
SmoothQuant 引入了一个超参数 α 作为平滑因子来计算每个通道的量化比例因子,并平衡激活值和权重的量化难度。
其中 j 是输入通道索引。
对于OPT 和 BLOOM 等大多数模型来说,α=0.5 是一个能够较好实现权重和激活值量化难度分割的平衡值。模型的激活异常值越大,就越需要使用更大的 α 值来将更多的量化难度转移到权重上。
原始的 SmoothQuant 旨在通过针对整个模型使用一个固定值 α 来分割权重和激活值的量化难度。然而,由于激活异常值的分布不仅在不同模型之间存在差异,而且在同一模型的不同层之间也不尽相同,因此,本文推荐使用英特尔® Neural Compressor 的自动调优能力,逐层获取最佳 α 值。
相关方法包括以下五个主要步骤(伪代码如下所示):
本文提出的方法支持用多个标准(如最小值、最大值和平均值)来确定 Transformer 块的输入层归一化 (LayerNorm) 操作的 α 值。实验发现,将 α 范围设为 [0.3, 0.7],步长设为 0.05,对大多数模型来说都能达到很好的平衡。
这一方法有两个显著特点:一是全自动化,二是比原始方法支持的融合模式多。
下图提供了在 BLOOM-1b7 模型上执行 SmoothQuant α 值自动调优的样例代码:
启用增强型 SmoothQuant 的样例代码
用户只需传递一个模型名称 (model_name) 和一个数据加载器。值得注意的是,模型分析主要依靠的是 Torch JIT。用户可以在加载 Hugging Face 模型(14) 时将 torchscript 设置为 True,或将 return_dict 设置为 False。更多信息请参阅英特尔® Neural Compressor 文档(10) 。
结果
本文提出的增强型 SmoothQuant 的主要优势在于提高了准确率。
经过对多种主流大语言模型的评估,具备自动调优能力的 INT8 SmoothQuant 最后一个词元 (last-token) 的预测准确率要高于原始 INT8 SmoothQuant 和 FP32 基线方法。详见下图:
FP32 基线方法、INT8(启用和不启用 SmoothQuant)以及 INT8(启用本文提出的增强型 SmoothQuant)的准确率对比
从上图可以看出,在 OPT-1.3b 和 BLOOM-1b7 模型上,本文提出的增强型 SmoothQuant 的准确率比默认的 SmoothQuant 分别高 5.4% 和 1.6%。量化后的模型也缩小到 FP32 模型的四分之一,大大减少了内存占用空间,从而有效地提升大模型在英特尔® 平台上的推理性能。
更全面的结果请见 GitHub 存储库(10) 。同时,也欢迎您创建拉取请求或就 GitHub 问题(15) 发表评论。期待听到您的反馈意见和建议。
作者:
英特尔公司人工智能资深架构师沈海豪、英特尔公司人工智能资深软件工程师程文华、英特尔公司人工智能软件工程师陆崟彤、何欣、郭恒、王畅、王梦妮,他们都在从事模型量化及压缩的研究与优化工作。
注释:
1、英特尔® Neural Compressor
https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/neural-compressor.html
2、英特尔® Extension for TensorFlow
https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/optimization-for-tensorflow.html
3、英特尔® Extension for PyTorch
https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/optimization-for-pytorch.html
4、英特尔® 至强® 可扩展处理器
https://www.intel.cn/content/www/cn/zh/products/details/processors/xeon/scalable.html
5、英特尔® 至强® CPU Max 系列
https://www.intel.cn/content/www/cn/zh/products/details/processors/xeon/max-series.html
6、英特尔® 数据中心 GPU Flex 系列
https://www.intel.cn/content/www/cn/zh/products/details/discrete-gpus/data-center-gpu/flex-series.html
7、英特尔® 数据中心 GPU Max 系列https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html
8、第四代英特® 至强® 可扩展处理器
https://www.intel.cn/content/www/cn/zh/events/accelerate-with-xeon.html
9、AI 与内存墙
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
10、SmoothQuant 相关文档 / 英特尔® Neural Compressor 文档 / GitHub 存储库
https://github.com/intel/neural-compressor/blob/master/docs/source/smooth_quant.md
11、SPIQ
https://arxiv.org/abs/2203.14642
12、Outlier Suppression
https://arxiv.org/abs/2209.13325
13、 SmoothQuant
https://arxiv.org/abs/2211.10438
14、Hugging Face 模型
https://huggingface.co/models
15、GitHub 问题
https://github.com/intel/neural-compressor/issues
好文章,需要你的鼓励
美光推出新款 Crucial P510 PCIe Gen5 SSD,采用 276 层 3D NAND 闪存和群联 PS5031-E31T 控制器。该产品针对游戏和创意工作负载优化,提供高达 11,000/9,500 MBps 的读写速度,同时通过无 DRAM 设计降低成本。美光与群联的合作旨在满足当今技术用户对高性能和高效率存储的需求。
随着检索增强生成 (RAG) 技术的兴起,企业有望更好地利用大语言模型 (LLM) 和公司内部数据。RAG 技术能够将 LLM 与企业特定领域知识相结合,提升 AI 服务质量。未来,RAGOps 和智能代理等新方法将有助于 RAG 技术的大规模应用,为企业 AI 落地提供更多可能性。
HYCU 扩展了其 R-Cloud 服务,提升了数据在本地和公有云间的移动能力。升级后,客户可以更灵活地将数据放置在合适的混合或公有云环境中,优化成本。新版本支持更多基础设施,简化了备份、灾难恢复和迁移流程,实现一键式操作,帮助客户在不同平台间自由选择,避免被特定基础设施锁定。
微软计划在2025年淘汰和终止多项企业级Microsoft 365服务,不仅限于Windows 10支持的终止。这将对企业管理员带来巨大挑战,涉及Exchange Online、SharePoint、Teams等多个核心服务,需要企业提前做好准备和迁移工作。