英特尔公司今天宣布,该公司帮助美国能源部建造的超大规模超级计算机Aurora的所有计算模块已经安装完毕。
该系统是能源部、英特尔和HPE公司三方的合作。它位于Argonne国家实验室。科学家们将使用该系统运行人工智能模型、模拟和大规模数据分析应用。
预计今年晚些时候,Aurora的理论峰值性能将超过2 exaflops。这将使它的速度几乎达到世界目前运行最快的超级计算机(即能源部另一个名为Frontier的系统)的两倍。一个exaflop等于每秒10亿次的计算。
Argonne国家实验室的实验室副主任Rick Stevens表示:“在我们努力进行验收测试的同时,我们将使用Aurora来训练一些科学方面的大规模开源生成式人工智能模型。”“Aurora拥有超过6万个英特尔Max GPU,一个非常快的I/O系统和一个全固态大容量存储系统,是训练这些模型的完美环境。”
Aurora由10,624个被称为刀片的计算模块组成。这些刀片每个重70磅,在166个冰箱大小的机柜里运行。完全组装好的系统所占的空间相当于两个专业篮球场。
每个Aurora刀片包括两个来自英特尔至强Max系列CPU芯片的中央处理单元。还有六个英特尔Max系列GPU显卡。这些处理器由内存芯片、网络设备和内置在每个刀片中的冷却装置支持。
英特尔的Xeon Max系列CPU芯片基于10纳米架构。它们针对人工智能模型等工作负载进行了优化,这些模型需要频繁地将数据移入和移出内存的能力。为了加速此类工作负载,这些CPU采用了一种被称为HBM的高速内存,这在英特尔之前的芯片中是没有的。
英特尔的Max系列GPU,构成了Aurora的另一个核心构件,也针对AI工作负载进行了优化。显卡表达计算的语言被称为指令集。英特尔Max系列GPU的指令集专门针对矩阵乘法,即人工智能模型用来处理数据的数学运算。
这些芯片还包括多达128个光线追踪单元。光线追踪是一种渲染照明和阴影效果的方法。据英特尔称,该技术加快了科学应用的数据可视化功能。
总体而言,Aurora具有21248个CPU和63744个显卡。这使得它成为世界上最大的GPU集群。这些芯片由一个220PB的对象存储池支持,Aurora将用来存储科学应用的数据。
充分利用Aurora的性能需要研究人员专门为该系统优化应用。为了减轻这一任务,能源部已经创建了一个名为Sunspot的缩微版Aurora。它提供了一个环境,研究人员可以在其中测试不同的软件优化方法。
截至今年早些时候,有十多个研究小组正在使用该系统。一旦Aurora开始运行,这些团队将开始从Sunspot转移代码。早期的Aurora用户将侧重确定在第一批生产应用可以部署之前可能必须解决的所有技术问题。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。