今天,英特尔发布包含12个硅自旋量子比特(silicon spin qubit)的全新量子芯片Tunnel Falls,继续探索量子实用性,以解决重大难题。Tunnel Falls是英特尔迄今为止研发的最先进的硅自旋量子比特芯片,利用了英特尔数十年来积累的晶体管设计和制造能力。
在英特尔的晶圆厂里,Tunnel Falls是在300毫米的硅晶圆上生产的,利用了英特尔领先的晶体管工业化制造能力,如极紫外光刻技术(EUV),以及栅极和接触层加工技术。在硅自旋量子比特中,信息(0/1)被编码在单个电子的自旋(上/下)中。硅自旋量子比特本质上是一个单电子晶体管,因此英特尔能够采用与标准CMOS(互补金属氧化物半导体)逻辑生产线类似的流程制造它。
英特尔认为,硅自旋量子比特比其他量子比特技术更有优势,因其可以利用先进晶体管类似的生产技术。硅自旋量子比特的大小与一个晶体管相似,约为50 x 50纳米,比其它类型的量子比特小100万倍,并有望更快实现量产。《自然·电子学》期刊上的一篇论文表示,“硅可能是最有机会实现大规模量子计算的平台”。
同时,利用先进的CMOS生产线,英特尔可以通过其创新的制程控制技术提高良率和性能。Tunnel Falls的良率达到了95%,实现了与CMOS逻辑制程接近的电压均匀性(voltage uniformity)。此外,英特尔可在每块晶圆上实现超过24000个量子点。Tunnel Falls能够形成可被相互隔离或同时操控的4到12个量子比特。
接下来,英特尔将继续致力于提高Tunnel Falls的性能,并将其和英特尔量子软件开发工具包(SDK)整合在一起,集成到英特尔的量子计算堆栈中。此外,基于制造Tunnel Falls的经验,英特尔已经开始研发下一代量子芯片,预计将于2024年推出。
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。