英特尔近日推出了oneAPI工具包的新版本,让开发人员能够构建可以运行在多种处理器上的应用。

很多企业的技术环境包含了多种芯片。例如,某个组织可能在CPU上运行数据库,在GPU上运行人工智能应用,还有一些企业会使用更专业的芯片例如FPGA。
可以运行在一种芯片上的应用,不一定兼容另一种芯片。通常,把应用程序迁移到新的处理器架构上,需要开发人员更改大量的代码。工作负载必须支持的芯片越多,必须更改的代码也就越多。
英特尔的oneAPI工具包可以让开发人员更轻松地构建可运行在多种类型芯片上的应用。据英特尔称,oneAPI减少了应用从一种处理器架构转移到另一种处理器架构时必须更改的代码量,结果就是让开发人员能够更快地完成软件项目。
英特尔这次推出的最新版本oneAPI支持英特尔即将推出的几款数据中心处理器,还提高了与竞争对手芯片的兼容性。
据英特尔称,oneAPI的新版本支持英特尔即将推出的Sapphire Rapids系列服务器CPU,以及英特尔最近推出的Xeon Max系列,后者包括了针对高性能计算系统特别是超级计算机进行优化的CPU。
开发人员现在还可以使用oneAPI为英特尔即将推出的数据中心GPU系列构建应用。该产品线的主角是Max系列,一种拥有超过1000亿个晶体管的芯片,其中包含了47个小芯片或者是计算模块,经过优化可以运行机器学习软件。
有一些应用需要能够运行在多个厂商的GPU上。为了简化此类工作负载的开发,英特尔正在使用一系列新软件插件扩展oneAPI,这些插件由Codeplay Software开发,这家位于爱丁堡的公司已于今年早些时候被英特尔收购。
开发人员使用一种名为SYCL的编程语言来编写oneAPI应用,使用这种语言编写的代码可以运行在多种类型的芯片上。据英特尔称,新的oneAPI插件将让开发人员更容易编写SYCL代码运行在Nvidia和AMD的GPU上。
除了GPU之外,Nvidia也提供了CUDA软件工具包,企业使用该工具包来优化Nvidia GPU驱动的应用的性能水平。
在默认情况下,CUDA提供支持的、针对Nvidia芯片开发的应用并不兼容其他GPU。因此,将此类应用转移到另一家芯片制造商的GPU上,可能就会涉及到大量工作。为了简化这项任务,英特尔更新了oneAPI,使其可以更轻松地把CUDA驱动的软件转换为支持多种类型GPU的SYCL代码。
英特尔还通过其他方式简化了基于GPU的应用开发。英特尔新增了一项功能,可以自动执行工作负载的Roofline分析。Roofline分析是一种性能评估方法,可以帮助开发人员找到加速软件的方法。
美国阿贡国家实验室计算科学部副主任Timothy Williams表示:“我们的开发系统使用了英特尔Max系列GPU加速器,以及使用英特尔oneAPI编译器和库构建应用,得到的早期应用性能结果是令人鼓舞的。针对领先的计算科学,我们重视来自多厂商、多架构编程标准的代码可移植性带来的好处。”
除了GPU新功能之外,oneAPI的新版本还包括其他几项增强功能。英特尔改进了对开源工具OpenMP的支持,开发人员可以使用OpenMP开发能同时运行在多个处理器核心上的程序。此外,英特尔还增强了oneAPI的oneMKL组件,从而更容易开发执行复杂数学运算的应用。
好文章,需要你的鼓励
微软于12月1日正式关闭混合现实协作平台Mesh,将用户引导至Teams的沉浸式活动功能。Mesh作为独立服务在2024年正式发布,提供3D虚拟会议环境,但与Teams功能重叠明显。微软已将相关功能直接整合到Teams中,需要商业Teams许可证和Premium许可证才能主持沉浸式活动。这标志着微软元宇宙雄心的终结,公司已放弃HoloLens项目和美军合同,转向AI发展战略。
这项由Snowflake AI Research发表的研究挑战了传统语言学对大型语言模型的批评,通过引入波兰语言学家Mańczak的理论框架,论证了LLM的成功实际上验证了"频率驱动语言"的观点。研究认为语言本质上是文本总和而非抽象系统,频率是其核心驱动力,为重新理解AI语言能力提供了新视角。
亚马逊云服务发布AI工厂解决方案,支持政府和监管行业在本地数据中心部署完整AWS AI基础设施。同时推出搭载三纳米Trainium3芯片的EC2 Trn3超级服务器,性能较前代提升4.4倍,能效提升4倍。此外还引入配备英伟达GB300 NVL72平台的P6e-GB300超级服务器,为万亿参数AI推理提供最高GPU密度支持。
freephdlabor是耶鲁大学团队开发的开源多智能体科研自动化框架,通过创建专业化AI研究团队替代传统单一AI助手的固化工作模式。该框架实现了动态工作流程调整、无损信息传递的工作空间机制,以及人机协作的质量控制系统,能够自主完成从研究构思到论文发表的全流程科研工作,为科研民主化和效率提升提供了革命性解决方案。