x86巨头表示,将根据“市场需求”调整对德国及美国俄亥俄州工厂的投入。
英特尔公司表示,尽管全球经济正在萎缩,但在西方世界建设芯片制造工厂的计划不会动摇。芯片巨头认定半导体需求必将反弹,因此实现供应链多元化和扩大产能将非常重要。

英特尔全球运营负责人Keyvan Esfarjani在周一发表的社论当中,还重申了其在美国及欧洲投入数十亿美元扩张芯片制造设施的承诺。
虽然Esfarjani未做明确表态,但这篇社论似乎是在针对怀疑论者的质疑:既然全球电子产品需求已经降温、芯片正由严重短缺转为供过于求,为什么英特尔还坚持要在美国俄亥俄州及德国兴建大型晶圆厂。
毕竟,英特尔在俄亥俄州和德国建厂,肯定能从美国、欧盟乃至各地方政府手中拿到可观的政府补贴。再结合最新季度的收入暴跌,人们确实有理由怀疑英特尔这是不是想借建晶圆厂之名强敛财政补贴。
Esfarjani在文中写道,“自我们公布在德国和俄亥俄州建设新半导体工厂的计划以来,情况确实出现了很大变化:地缘政治挑战愈演愈烈,半导体的市场需求下降,通货膨胀与经济衰退的压力正肆虐全球。”
作为英特尔扩张计划的主要发言人,Esfarjani也承认虽然产能扩张工作仍在继续,但“环境也确实出现了剧烈变化”。
至于英特尔坚持扩大制造能力的重要意义,他给出了两点理由。其一,半导体行业需要将生产能力从亚洲转移到西方世界,借此实现芯片供应链的多元化、摆脱尖端芯片对亚洲产能的高度依赖。
“这不是一朝一夕就能解决的挑战,甚至不可能在几年之内就顺利转移。一流的半导体设施或者说晶圆厂,往往需要三到五年时间才能建成。这还得是土地、施工团队和地方政府全力配合,齐头并进的理想情况。但我们相信欧洲和美国有能力支持,也必将受益于这种更强大的地区半导体生态建设。”
英特尔还认为,经济必将在适当时反弹,届时芯片的市场需求将再度上扬。为了打好提前量,当下扩张晶圆代工产能就是正确的选择。
Esfarjani引用了半导体行业协会最近发布的一份报告,其中提到从当下到2030年,半导体需求将每年稳定增长5%。报告认为,到这个十年末,半导体行业的潜在市场总额将再翻一番、达到1万亿美元。
Esfarjani还明确指出,英特尔在德国和俄亥俄州的晶圆厂建设进度也会视经济态势而有所调整,并表示公司将“安排大笔预算以满足市场需求”。(但英特尔之前也曾提到,其俄亥俄州新建晶圆厂的「规模和建设速度」在很大程度上「取决于CHIPS与科学法案的补贴力度」。)
不过总体来看,即使对新代工厂规模做了些许调整,英特尔对接下来市场需求的大幅回升仍持乐观态度。芯片巨头还专门强调了这笔巨额支出的合理性:
我们不能等到市场需求恢复之后,再投资未来需要的产能。根据英特尔的智能资本战略,我们将继续投资未来,并根据需求、技术和产品准确等里程碑指标推动设备投入。立足当下规划未来,我们才能在经济复苏时走得更远。
Thrias Research首席分析师Kevin Krewell则认为,英特尔之所以努力扩大在西方各国的晶圆生产规模,就是意识到芯片制造商必须预测未来三到四年的需求,再提前为此做好准备。
在他看来,“当下规划的产能才是未来指望得上的资源。”
英特尔的扩张计划也反映出其勃勃野心,特别是坚信将重振合同芯片制造、推进芯片代工服务的鲜明立场。但有趣的是,代工部门上周刚刚经历了一轮重组,英特尔表示部门负责人将于明年初离职。
Krewell认为,“英特尔肯定希望代工业务能赢得更多客户,在内部制造订单之外再拿下一笔进项。”
但英特尔和其他芯片制造商着力建设的新晶圆厂可能会导致产能过剩。Krewell表示,所以英特尔才决定在经济放缓时谨慎控制新工厂和芯片制造设备方面的支出。
他总结道,“扩张计划应该不会经历全盘调整。但如果经济形势进一步恶化,英特尔肯定得重新考量这些投资。”
好文章,需要你的鼓励
阿布扎比科技创新研究院团队首次发现大语言模型生成的JavaScript代码具有独特"指纹"特征,开发出能够准确识别代码AI来源的系统。研究创建了包含25万代码样本的大规模数据集,涵盖20个不同AI模型,识别准确率在5类任务中达到95.8%,即使代码经过混淆处理仍保持85%以上准确率,为网络安全、教育评估和软件取证提供重要技术支持。
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
斯坦福大学研究团队首次系统比较了人类与AI在文本理解任务中的表现。通过HUME评估框架测试16个任务发现:人类平均77.6%,最佳AI为80.1%,排名第4。人类在非英语文化理解任务中显著优于AI,而AI在信息处理任务中更出色。研究揭示了当前AI评估体系的缺陷,指出AI的高分往往出现在任务标准模糊的情况下。