英特尔近日发布了最新产品Intel Max系列,希望以此在高性能计算和人工智能市场与竞争对手AMD及Nvidia展开竞争。
Intel Max系列中包括了CPU和GPU,代号为Sapphire Rapids HBM的英特尔Xeon CPU Max系列,以及英特尔面向数据中心的GPU Max系列,都将用于为美国阿贡国家实验室即将于明年上线的Aurora超级计算机提供动力。
Aurora有望成为世界上第一台峰值双精度计算性能超过2 exaflops的超级计算机,并将成为第一个同时使用Max系列CPU和GPU的系统。Aurora系统将容纳超过10000个服务器刀片,每个刀片包含6个Max系列GPU和2个Xeon Max CPU。
英特尔表示,虽然Aurora将展示Max系列的强大功能,但Max系列新产品的真正目的是为了让高性能计算和人工智能更容易进入更为广阔的市场。英特尔副总裁、超级计算群组总经理Jeff McVeigh在媒体简报会上表示:“我们正在努力地帮助以更快速度解决世界上最大的挑战,并以可持续的方式做到这一点。”
他解释说,在高性能计算和人工智能的帮助下,很多围绕气候变化和全球健康的一大堆复杂问题将得到更快速的解决。他解释说,英特尔的目标是应对这些领域中广泛且多样化的工作负载,其中一些受计算密集的限制,而另一些受内存带宽的限制。他说:“我们的观点是,所有这些都很重要,我们需要有合适的解决方案来解决这些问题。”
Max系列芯片由英特尔开放的、基于标准和跨架构的编程框架oneAPI统一起来,为这两种新处理器带来的统一的编程环境。
英特尔表示,Xeon Max CPU是该系列中首款也是唯一一款基于x86的处理器,具有高带宽内存,无需修改代码即可加速高性能计算工作负载。据说,这是英特尔迄今为止密度最高的CPU,有超过1000亿个晶体管挤在47块封装和128 GB高带宽内存中。
McVeigh说:“为了确保可以覆盖到任何高性能计算工作负载,我们需要一种能够最大化带宽、最大化计算、最大化开发人员生产力并最终最大化影响的解决方案。英特尔Max系列产品与oneAPI一起,为更广阔的市场带来了高带宽内存,让CPU和GPU之间的代码共享变得很容易,从而可以更快地解决全球最大的挑战。”
英特尔热衷于在高性能计算市场上展现自己的存在感,很多人认为,高性能计算市场是计算技术的最前沿,其中涉及到大规模使用最先进芯片并以创新的方式克服全球最严峻的挑战。因此,对于英特尔这样的公司来说,成为市场领导者是关乎声誉的事情。
英特尔的Max系列为高性能计算行业带来了一个引人关注的新选择。据说,英特尔Xeon Max CPU在实际的高性能计算工作负载上运行的性能,要比竞争对手的芯片高4.8倍。例如,英特尔表示,与AMD Milan-X芯片相比,英特尔Xeon Max CPU使用68%的功率就可达到相同的HCPG性能。同时,AMX扩展也显着提升了AI性能,在某些工作负载中峰值吞吐量提高了8倍。
在一些常见高性能计算工作负载方面,英特尔表示,Max CPU在气候建模工作负载方面要比AMD Milan-X快2.4倍,在分子动力学方面快2.8倍。
至于英特尔Max系列GPU,配备了多达128个Xe-HPC核心,可以作为那些要求最苛刻的高性能计算工作负载的基础架构。英特尔承诺,Max GPU具有408 MB的L2高速缓存(业界最高)以及64 MB的L1 高速缓存,极大地提高了吞吐量和性能水平。
还有更多。英特尔承诺,Max系列GPU的下一代,也就是Intel Data Center Max Series GPU,将于2024年问世,将在性能上有更为显着的提升。与此同时,英特尔表示,还会通过即将推出的Falcon Shores辅助处理单元推出英特尔面向未来高性能计算的下一个重大架构创新,将把x86和Xe核心组合在一个封装内。
好文章,需要你的鼓励
三星与AI搜索引擎Perplexity合作,将其应用引入智能电视。2025年三星电视用户可立即使用,2024和2023年款设备将通过系统更新获得支持。用户可通过打字或语音提问,Perplexity还为用户提供12个月免费Pro订阅。尽管面临版权争议,这一合作仍引发关注。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
苹果M5 MacBook Pro评测显示这是一次相对较小的升级。最大变化是M5芯片,CPU性能比M4提升约9%,多核性能比M4 MacBook Air快19%,GPU性能提升37%。功耗可能有所增加但电池续航保持24小时。评测者认为该产品不适合M4用户升级,但对使用older型号用户仍是强有力选择。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。