英特尔的研究人员近日宣布在集成硅光子学领域取得了一些值得注意的进展,为实现处理器之间更高速的互连铺平了道路。
英特尔实验室(Intel Labs)表示,这一研究代表了扩展数据中心计算处理器之间的通信带宽以及跨不同网络通信带宽的“下一个前沿”。
硅光子学是一种将硅集成电路与半导体激光器相结合的技术,主要好处是能够比传统电子设备在更长的距离上更快速地传输数据。英特尔在其官网上解释说,硅光子学提供了更高的带宽、对计算和存储资源的软件可配置访问,同时还让软件定义的基础设施可以为分散的数据中心解耦硬件和软件资源。
英特尔是集成光子学领域的领导者,现有的100G收发器是5年前推出的,如今英特尔已经开始推进400G收发器的商用化,800G也列入了路线图中。然而,为了更进一步,英特尔需要找到一种方法把光子学与硅更紧密地进行集成。目前,英特尔已经在“共同封装光学”领域取得了进展,但最终目标是实现完全集成,也就是光子集成电路直接连接到计算的其他部分。
现在,英特尔提出了一种新技术来实现这一目标。英特尔实验室表示,预计该技术将让未来的I/O光子接口具有更高的能效和带宽、更远的覆盖范围。
这一发现集中在获得良好匹配的输出功率、均匀和密集间隔波长的可能性上。英特尔实验室高级首席工程师Haisheng Rong表示,利用英特尔晶圆厂现有的制造和工艺技术可以实现这些技术改进,从而确保对“下一代联合封装光学和光学计算互连的大规模量产”。
英特尔实验室表示,这项研究展现了他们在多波长集成光学领域取得的关键进展,例如,英特尔实验室展示了一个八波长分布式反馈激光阵列(如图),该阵列完全集成在硅晶片上,提供的输出功率均匀性和波长间隔均匀性远远超出现有标准所能达到的水平。
这一切意味着英特尔很快将能够开发一种光源,实现完全集成的光子学,为未来要求更高的大批量应用提供所需的性能。要满足这些需求,就要能够应对网络密集型工作负载(例如人工智能和机器学习)的光学计算互连需求。英特尔表示,这一激光阵列是在英特尔现有300毫米硅光子制造工艺基础上开发的,为大规模生产和行业广泛部署奠定了基础。
值得注意的是,与英特尔在3英寸或4英寸III-V晶圆厂中生产的传统半导体激光器相比,这项新技术实现了更好的波长均匀性。此外,由于紧密集成了激光器,当环境温度发生变化时,阵列仍能保持通道间距。
英特尔表示,该技术将用于未来光学计算互连小芯片产品中,这种产品将提供“包括CPU、GPU和内存在内的计算资源之间的高能效、高性能、每秒多兆比特的互连”。
好文章,需要你的鼓励
腾讯今日开源混元MT系列语言模型,专门针对翻译任务进行优化。该系列包含四个模型,其中两个旗舰模型均拥有70亿参数。腾讯使用四个不同数据集进行初始训练,并采用强化学习进行优化。在WMT25基准测试中,混元MT在31个语言对中的30个表现优于谷歌翻译,某些情况下得分高出65%,同时也超越了GPT-4.1和Claude 4 Sonnet等模型。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
今年是Frontiers Health十周年。在pharmaphorum播客的Frontiers Health限定系列中,网络编辑Nicole Raleigh采访了Startup Health总裁兼联合创始人Unity Stoakes。Stoakes在科技、科学和设计交汇领域深耕30多年,致力于变革全球健康。他认为,Frontiers Health通过精心选择的空间促进有意义的网络建设,利用网络效应推进创新力量,让企业家共同构建并带来改变,从而有益地影响全球人类福祉。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。