随着数据中心对人工智能和机器学习(AI/ML)的利用率越来越高,大量数据不断被产生和消耗,这给数据中心快速而高效地存储、移动和分析数据提出了巨大挑战。
而中国的情况尤其如此:随着中国不断推进人工智能的发展,对高性能处理的需求持续增长,而传统数据中心已然成为必须解决的瓶颈。为应对这一挑战,中国公布了《新型数据中心发展三年行动计划》。与传统数据中心相比,新型数据中心具有高技术、高算力、高能效和高安全的特征。
在市场需求和产业政策支持的双驱动下,数据中心服务器迫切需要更大的内存带宽和容量,以更好地支持AI/ML的持续发展。

自2013年推出以来,高带宽存储器(HBM)日益被视为将数据中心服务器和AI加速器的性能提升至新高度的理想方式之一。HBM是一种基于3D堆栈工艺的高性能SDRAM架构,能够实现巨大的内存带宽。
2018年年底,JEDEC固态技术协会宣布了HBM2E标准,以支持更高的带宽和容量。HBM2E每个引脚的传输速率上升到3.6Gbps,可以实现每个堆栈461GB/s的内存带宽。此外,HBM2E最高支持12个DRAM的堆栈高度,并且单堆栈内存容量高达24GB。
在HBM2E中,四个连接到处理器的堆栈将提供超过1.8TB/s的带宽。通过内存的3D堆叠,HBM2E可以在极小的空间内实现高带宽和高容量。在此基础上,下一代的HBM3内存将数据传输速率和容量推向了新的高度。
Rambus HBM3内存子系统针对高带宽和低延迟进行了专门优化,能够以紧凑的架构和高效能的封装提供最佳的性能和灵活性。这一解决方案由完全集成的PHY和数字控制器组成,包含完整的HBM3内存子系统。
相比HBM2E,Rambus HBM3内存子系统将最大数据传输速率提高了一倍以上,达到每个数据引脚8.4Gbps(当此速度下的DRAM可用时)。该系统接口具有16个独立通道,每个通道包含64位,总数据宽度为1024位。在最大数据传输速率下,可以提供1075.2GB/s的总接口带宽,换言之,带宽超过1TB/s。

这一内存子系统专为2.5D架构设计,带有一个内插器,以在SoC上的3D DRAM堆栈和PHY之间传输信号。同时,这种信号密度和堆叠架构的组合还要求特殊的设计考量。为提高设计的易实施性和灵活性,Rambus对整个2.5D架构的内存子系统进行了完整的信号和电源完整性分析,以确保满足所有的信号、电源和热量要求。除此之外,Rambus还提供中介层参考设计。
凭借在高速信号处理方面逾30年的专业知识,以及在2.5D内存系统架构设计和实现方面的深厚积淀,Rambus正引领HBM的演变。Rambus提供了业界最快的HBM2E内存子系统;如今通过数据传输速率高达8.4Gbps的HBM3内存子系统,Rambus更进一步地提高了HBM的带宽标准。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
延世大学研究团队通过分析AI推理过程中的信息密度模式,发现成功的AI推理遵循特定规律:局部信息分布平稳但全局可以不均匀。这一发现颠覆了传统的均匀信息密度假说在AI领域的应用,为构建更可靠的AI推理系统提供了新思路,在数学竞赛等高难度任务中显著提升了AI的推理准确率。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
蒙特利尔大学团队发现让AI"分段思考"的革命性方法Delethink,通过模仿人类推理模式将长篇思考分解为固定长度块,仅保留关键信息摘要。1.5B小模型击败传统大模型,训练成本降至四分之一,计算复杂度从平方级降为线性级,能处理十万词汇超长推理,为高效AI推理开辟新道路。