数字经济背景下,企业的数字化转型进程不断提速。但是在这一进程中,企业在架构选型以及IT建设方面仍然会面临困惑。
在由英特尔、HPE、至顶科技联合举办的“见招拆招 IT转型与智者同行”节目上,计算机学会专家张云泉博士针对用户在数字化转型中遇到的“困惑”难题,提出了四大问题,而英特尔中国云创中心技术总监高丰、HPE CTO兼首席架构师张楠针对这些问题给出了相关建议。
我们以“算力多少才算够?”为例,随着大数据、云计算、AI等新一代信息技术的融合创新和持续深入,各种场景创新层出不穷。企业的算力平台应该如何构建才能确保数据的处理速度以及数据分析的效用最大化?
英特尔中国云创中心技术总监高丰介绍说,英特尔软硬协同,赋能算力供给。针对行业客户持续提高的算力需求,英特尔在软硬件方面持续创新,其中英特尔®至强®可扩展处理器在承载企业业务应用方面的性能表现非常卓越 。
第三代英特尔®至强®可扩展处理器为数据分析和处理提供了更强大的性能,相比上一代产品平均性能提升46%, 而在AI、云计算、物联网和5G等典型应用上,其性能也分别有50%至74%的提升。
当然,为了让硬件算力发挥出来,离不开软件的赋能和协同。长期以来,英特尔在操作系统内核、底层驱动、编译器、数学库、编程框架等方面持续创新。同时利用开源社区和合作伙伴,为每一代英特尔®至强®可扩展处理器提供行业应用的深度优化,开发新的解决方案,从而更好地服务高速发展的新业务、新场景,满足日益增长的算力需求。
HPE CTO兼首席架构师张楠表示,为确保客户将数据转化为洞见力,数字化转型全面推动了传统IT,以及从边缘到云处理的新需求,现在的客户比以往任何时候都更需要算力。为了这个目标,HPE建立了一个从边缘延伸到百亿亿次算力的产品的组合方案。
在云服务与硬件采购的选择方面,高丰认为,英特尔®至强®可扩展处理器是针对传统行业应用和云上应用的各种严苛要求而进行的设计和优化,并支持广泛的业务部署场景。英特尔根据不同行业特点,进行跨行业的云技术应用和部署的经验分享。比如基于第三代英特尔®至强®可扩展处理器的AI推理方案,大数据方案的最佳实践,在运营商、金融保险、生命科学、制造零售等行业推广。
张楠则表示,传统IT最大的问题就是投资成本不可预知,资源浪费严重,IT运维成本居高不下。所以在2017年,HPE推出了GreenLake 全新即服务业务,目的就是让用户的IT采购模式像企业缴纳电费一样,按月收费,按用量计费。,HPE GreenLake帮助全球用户降低了30%的IT成本支出,缩短了75%的业务上线时间,以及节省了40%的人工成本。
除了算力和IT采购方面的问题,嘉宾还围绕云边协同、IT运维智能化等热门话题展开深入讨论。想要了解更多嘉宾的精彩观点,请访问专区https://www.zhiding.cn/intel_oem/2021/hpearena
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。