英特尔的目标是在封装中将密度提升10倍以上,将逻辑微缩提升30%至50%,并布局非硅基半导体
在不懈推进摩尔定律的过程中,英特尔公布了在封装、晶体管和量子物理学方面的关键技术突破,这些突破对推进和加速计算进入下一个十年至关重要。在2021 IEEE国际电子器件会议(IEDM)上,英特尔概述了其未来技术发展方向,即通过混合键合(hybrid bonding)将在封装中的互连密度提升10倍以上,晶体管微缩面积提升30%至50%,在全新的功率器件和内存技术上取得重大突破,基于物理学新概念所衍生的新技术,在未来可能会重新定义计算。
英特尔高级院士兼组件研究部门总经理Robert Chau表示:“在英特尔,为持续推进摩尔定律而进行的研究和创新从未止步。英特尔的组件研究团队在IEDM 2021上分享了关键的研究突破,这些突破将带来革命性的制程工艺和封装技术,以满足行业和社会对强大计算的无限需求。这是我们最优秀的科学家和工程师们不懈努力的结果,他们将继续站在技术创新的最前沿,不断延续摩尔定律。”
摩尔定律满足了从大型计算机到移动电话等每一代技术的需求,并与计算创新同步前行。如今,随着我们进入一个具有无穷数据和人工智能的计算新时代,这种演变仍在继续。
持续创新是摩尔定律的基石,英特尔的组件研究团队致力于在三个关键领域进行创新:第一,为提供更多晶体管的核心微缩技术;第二,在功率器件和内存增益领域提升硅基半导体性能;第三,探索物理学新概念,以重新定义计算。众多突破摩尔定律昔日壁垒并出现在当前产品中的创新技术,都源自于组件研究团队的研究工作,包括应变硅、高K-金属栅极技术、FinFET晶体管、RibbonFET,以及包括EMIB和Foveros Direct在内的封装技术创新。
在IEDM 2021上披露的突破性进展表明,英特尔正通过对以下三个领域的探索,持续推进摩尔定律,并将其延续至2025年及更远的未来。
一、为在未来的产品中提供更多的晶体管,英特尔正针对核心微缩技术进行重点研究:
二、英特尔为硅注入新功能:
三、英特尔正致力于大幅提升硅基半导体的量子计算性能,同时也在开发能在室温下进行高效、低功耗计算的新型器件。未来,基于全新物理学概念衍生出的技术将逐步取代传统的MOSFET晶体管:
关于英特尔组件研究部门:英特尔组件研究部门是英特尔技术研发部门中的研究团队,负责提供革命性的制程工艺和封装技术方案,以推进摩尔定律并实现英特尔的产品和服务。英特尔组件研究团队与公司的业务部门建立了内部合作关系,以预测未来需求。同时,该团队也与外部建立合作关系,包括政府机构研究实验室、行业协会、大学研究团体及各类供应商,以保持英特尔研究和开发渠道的完整性。
好文章,需要你的鼓励
OpenAI 按用户需求在 ChatGPT 推出全新 GPT-4.1 及其 mini 与 nano 版本,专注提升编程、指令理解与长文本处理能力,免费及付费用户均可体验。
谷歌 DeepMind 推出的 AlphaEvolve AI 智能体,利用多轮反馈机制优化编程和数学任务,已在数据中心与芯片设计中提效,并重现数学问题的先进解法。
DeepMind 推出的 AI 系统 AlphaEvolve 利用自动评估机制解决数学与科学问题,在数学测试和 Google 数据中心优化中提升效率。虽非颠覆性革新,却能帮助专家腾出精力应对更重要任务。
科技公司 Stability AI 同芯片厂 Arm 合作推出“Stable Audio Open Small”,这是一款基于无版权音库训练、可在智能手机上迅速生成短音频样本的立体声音频 AI 模型,虽仅支持英文提示并存在部分局限,但对研究者和小型企业免费开放。