在NeurIPS大会上发布的两个数据集可助编目数十种语言
在近日举行的NeurIPS大会上,发布了两册英特尔提供支持的关于口语数据集的白皮书,其中,《人的语言》主要涉及到“自动语音识别”任务,另一册——《多语种口语语料库》则涵盖“关键词识别”。这两个项目的数据集都贡献了大量丰富的音频数据,且每个数据集在同类中都拥有最大的可用体量。
《多语种口语语料库》由英特尔软件与先进技术事业部(SATG)的机器学习工程师Keith Achorn参与撰写。Keith在英特尔社区网站的博客中讲述了自己参与该项目的经历。
在ML Commons 的支持下,“人的语言”和“多语种口语语料库”于2018年开始启动,该项目旨在识别世界上最常用的 50 种语言并统一到单一的数据集中,从而使这些数据得到有效利用。该项目小组成员来自英特尔、哈佛大学、阿里巴巴、甲骨文、Landing AI、密歇根大学、谷歌、百度等。
在当今多元化、国际化、多语言的工作环境中,准确转录和翻译的能力愈发重要。通过使用以上数据集,计算机可以“听到”口语单词,并自动生成文本或译文。
这两个项目都运用了“多样化语音”,这意味着它们可以更好地展现自然环境音,如背景噪音、非正式语言模式、录音设备混音以及其他声学环境等。这与诸如有声读物之类的高度受控的内容不同,后者产生的声音更加“纯净”。然而,在实际应用中,多样化语音训练有助于提高识别的准确性。
“人的语言”项目内含数万小时的对话音频。如今,它是世界上最大的、可免费下载的、用于学术和商用的英语语音识别数据集之一。
“多语种口语语料库”是一个音频语音数据集,不仅拥有超过30万个关键字的数十种语言,能够通过智能设备访问,还涵盖了50多亿用户的日常对话,有助于推动全球范围内受众语音应用的研发。
这两个数据集都将提供给广泛的用户进行应用,它们包括商用在内的授权许可条款都相对较为宽松。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。