在NeurIPS大会上发布的两个数据集可助编目数十种语言
在近日举行的NeurIPS大会上,发布了两册英特尔提供支持的关于口语数据集的白皮书,其中,《人的语言》主要涉及到“自动语音识别”任务,另一册——《多语种口语语料库》则涵盖“关键词识别”。这两个项目的数据集都贡献了大量丰富的音频数据,且每个数据集在同类中都拥有最大的可用体量。
《多语种口语语料库》由英特尔软件与先进技术事业部(SATG)的机器学习工程师Keith Achorn参与撰写。Keith在英特尔社区网站的博客中讲述了自己参与该项目的经历。
在ML Commons 的支持下,“人的语言”和“多语种口语语料库”于2018年开始启动,该项目旨在识别世界上最常用的 50 种语言并统一到单一的数据集中,从而使这些数据得到有效利用。该项目小组成员来自英特尔、哈佛大学、阿里巴巴、甲骨文、Landing AI、密歇根大学、谷歌、百度等。
在当今多元化、国际化、多语言的工作环境中,准确转录和翻译的能力愈发重要。通过使用以上数据集,计算机可以“听到”口语单词,并自动生成文本或译文。
这两个项目都运用了“多样化语音”,这意味着它们可以更好地展现自然环境音,如背景噪音、非正式语言模式、录音设备混音以及其他声学环境等。这与诸如有声读物之类的高度受控的内容不同,后者产生的声音更加“纯净”。然而,在实际应用中,多样化语音训练有助于提高识别的准确性。
“人的语言”项目内含数万小时的对话音频。如今,它是世界上最大的、可免费下载的、用于学术和商用的英语语音识别数据集之一。
“多语种口语语料库”是一个音频语音数据集,不仅拥有超过30万个关键字的数十种语言,能够通过智能设备访问,还涵盖了50多亿用户的日常对话,有助于推动全球范围内受众语音应用的研发。
这两个数据集都将提供给广泛的用户进行应用,它们包括商用在内的授权许可条款都相对较为宽松。
好文章,需要你的鼓励
阿里纳德数据中心与Calibrant Energy合作开发首创电池储能系统,通过绕过传统电网升级时间线,使俄勒冈州希尔斯伯勒在建数据中心园区提前数年上线。该31兆瓦、62兆瓦时储能系统计划2026年投运,将作为响应电网的动态资产,在需求高峰期放电,增强区域电网可靠性。这标志着美国首次使用专用电池系统加速大型数据中心并网。
普拉大学研究团队开发的BPMN助手系统利用大语言模型技术,通过创新的JSON中间表示方法,实现了自然语言到标准BPMN流程图的自动转换。该系统不仅在生成速度上比传统XML方法快一倍,在流程编辑成功率上也有显著提升,为降低业务流程建模的技术门槛提供了有效解决方案。
微软在Edge浏览器中推出增强版Copilot模式,提供更强大的AI代理功能,目前在美国进行限量预览。该模式包含Actions和Journeys两大功能:Actions让浏览器能代表用户执行任务,如语音控制打开网页或查找文章特定内容;Journeys则记住用户浏览历史,帮助用户继续之前的研究任务。此举正值AI浏览器竞争加剧,OpenAI推出ChatGPT Atlas、Perplexity发布Comet、谷歌集成Gemini到Chrome。目前Chrome占据71%市场份额,Edge仅占4.67%。
北京大学联合团队发布开源统一视频模型UniVid,首次实现AI同时理解和生成视频。该模型采用创新的温度模态对齐技术和金字塔反思机制,在权威测试中超越现有最佳系统,视频生成质量提升2.2%,问答准确率分别提升1.0%和3.3%。这项突破为视频AI应用开辟新前景。