如今的英特尔公司明显决定走上Alphabet董事长兼斯坦福大学前任校长John L. Hennessy提出的“特定领域架构”战略之路。为此,英特尔已经在CPU、GPU、各类ASIC以及FPGA等领域全面开花。虽然这种到处试水的作法有点“大力出奇迹”的意味,但也确实在塑造异构计算领域带来了不小的吸引力。但很明显,这种方式要求极高的资本密度、耗费大量工程资源,同时也会给软件开发者带来巨大的负担。在今天的文章中,我们就具体聊聊其中一种架构——作为英特尔家族全新补充成员的高性能GPU。
英特尔最近公布了即将推出的数据中心GPU Xe HPC的详细信息,这款产品代号为Ponte Vecchio(PVC)。英特尔大胆暗示,PVC GPU的峰值性能约为当前最快GPU英伟达A100的两倍。2022年,阿贡国家实验室的百亿亿次超级计算机Aurora就将采用PVC与Sapphire Rapids(多区块下一代至强处理器)构建。从这个角度看,这项技术本身应该已经相当成熟。
英特尔希望用这款GPU产品在高性能计算(64位浮点运算)与AI(8位/16位整数与16位浮点运算)方面对抗AMD与英伟达。Xe HPC采用一种多区块、多进程节点封装方案,采用新的GPU核心、HBM2e存储器、新的Xe Link互连以及使用超过1000亿个晶体管实现的PCIe Gen 5。考虑到实际尺寸,高频工作时的功耗就成了新的问题。但从Xe的设计中可以看出,英特尔很明显是有条有理:封装较小晶片不仅有助于降低开发与制造成本、同时也能缩短产品的上市时间。

Ponte Vecchio采用多区块、多进程节点封装。
Ponte Vecchio预计将于明年年初开始向阿贡国家实验室的Aurora供货,届时将由数万块GPU为这台由美国能源部资助的全球首台百亿亿次级超级计算机提供算力,实际性能至少可达成1.1百亿亿次浮点运算。

Ponte Vecchio承诺在英特尔的HPC与AI领域发挥重要作用。
初步性能声明无疑令人印象深刻,其表现可达英伟达A100的约两倍,矢量引擎每秒可提供45万亿次FP32触发操作,矩阵处理单元则可实现1468 INT8 TOPS。这款怪物级芯片的功耗约为600瓦,发热量肯定低不了。下图为英特尔公司在今年8月的架构日活动上公布的演示文稿。虽然没有做出横向对比,但这里呈现的肯定是最佳性能,也似乎再次强化了“两倍于A100”的结论。

Xe平台包含片上互连链路与开关,可高效扩展至8 GPU。
另一个有趣的点,在于英特尔会如何对Xe HPC与Habana Labs Gaudi进行区别定位。一种可能的猜测是将Ponte Vecchio推向HPC超级计算,而Gaudi则重点关注云服务商的可扩展训练平台。这很大程度上取决于英特尔打算为两款产品投入多少资源以吸引相应的软件团队。
除了直观的规格与码数之争,英特尔应该还会利用Aurora围绕Ponte Vecchio GPU构建开发者社区,包括将OneAPI全面引入AI与HPC领域。英特尔公司从来没有放弃过为高性能计算和AI提供单一抽象这个雄心勃勃、但又困难重重的目标。在最近的简报中,英特尔公司重申了这方面意图,并带来了不少令人信服的证据。可以看到,OneAPI正在获得市场的认可与接纳。我们虽然担心Habana还是无法支持该软件,但就目前的情况看,这种兼容性也确实不算高优先级任务。

英特尔表示,目前已经有80多款HPC与AI应用程序能够支持早期Ponte Vecchio芯片上的OneAPI。成绩不错,但别忘了英伟达CUDA可是有数百家支持者。
英特尔在GPU方面的成就给我留下了深刻印象。但Ponte Vecchio还需要克服两道难关才能真正取代AMD与英伟达:其一是保持合理的功耗,其二则是实现软件的易用性与高优化度。第二点尤其重要,英特尔必须简化代码并优化模型、降低使用难度,才能让声明的性能水平真正成为用户手中的可用资源。
在我看来,在Pat Gelsinger的英明领导下,Ponte Vecchio无疑有机会成为英特尔进军新时代的先锋与典范。最终表现如何,让我们拭目以待。
好文章,需要你的鼓励
本文揭示了AI时代CIO的七项关键行为特征,基于对多位CIO和AI专家的深度访谈。专家指出,AI精通的CIO需具备实用AI素养、战略视野和变革领导力,能将技术与业务战略对齐,建立强大数据治理基础。文章详细解析了分析型AI、生成式AI和智能体AI三大技术领域,强调数据基础的重要性,并提出CIO应从项目思维转向产品思维,通过跨职能团队实现端到端价值交付。
斯坦福大学等机构联合开发的CIFT系统首次解决了机器人"近视眼"问题,通过精确控制真实数据和合成数据的混合比例,让机器人在陌生环境中的表现提升54%以上。该系统包含多视角视频增强引擎MVAug和数据组合优化策略,能够预测数据失效的"去相干点",确保机器人学习真正重要的任务特征而非环境表象,为实用化通用机器人奠定了重要基础。
尽管苹果在AI竞赛中看似落后,但其私有云计算基础设施展现了技术优势。当行业为追赶大语言模型而降低隐私标准时,苹果坚持原则,开发出保护用户数据隐私的技术方案。谷歌最新宣布的类似实施方案验证了苹果技术路线的正确性,这可能推动其他AI实验室采用相同做法,为用户隐私带来重大胜利。
香港中文大学研究团队开发的Search-R3系统成功解决了大语言模型推理与搜索分离的问题,通过两阶段训练让AI在深度思考过程中直接生成搜索向量。该系统在多个领域测试中显著超越现有方法,特别是启用推理后性能提升明显,为AI系统设计提供了推理与搜索统一的新范式,展现了从专门化向通用化发展的重要方向。