Perlmutter将帮助科学家推动暗能量等前沿课题的研究
英伟达公司本周四公布了号称全球最强的AI超级计算机。这是一台名为Perlmutter的庞然大物,专供美国国家能源研究科学计算中心(NERSC)使用。

英伟达公司CEO黄仁勋介绍称,“Perlmutter将AI与高性能算力融合起来,有望推动材料科学、量子物理学、气候预测、生物研究等众多领域实现突破。”
这项耗资1.46亿美元的超级工程将分两个阶段推进,但目前的成果已经具备了一定可用性。
第一阶段主要由HPE工程师们组装基础设施以容纳设备,并部署总计1536个计算节点,每个节点包含4个由NVLink-3连接的英伟达A100 Tensor Core GPU外加1块AMD Milan Epyc处理器。据了解,这台超级计算机共包含6159个英伟达最新A100 GPU与1536块AMD服务器芯片,可在FP16精度下实现四百亿亿次AI计算性能。
第二阶段将于今年晚些时候启动,计划为设备添加更多CPU核心。新增的3072个计算节点将各包含2块AMD Milan处理器,且每节点封装512 GB内存。英伟达全球高性能计算与人工智能产品营销负责人Dion Harris在采访中表示,Perlmutter完成之后有望一举冲进全球超算五百强榜单的前五位置。之所以无法直接登顶,是因为超算五百强榜单要求以FP64精度为基础比较算力水平。
Perlmutter将在劳伦斯伯克利国家实验室部署并发挥作用。事实上,Perlmutter这个名字就来自该实验室兼加州大学伯克利分校物理学家Saul Perlmutter,他对宇宙膨胀速度超过原有预期的证明为他赢得了2011年诺贝尔奖。
这台超级计算机的一大核心诉求,在于构建起迄今为止规模最大的宇宙3D模拟星图。研究人员将把由暗能源光谱仪(安装在基特峰国家天文台直径四米的尼克拉斯·梅耶尔望远镜上,可捕获约3000万个星系发出的光)捕捉到的图像集中起来,供Perlmutter高效处理。
宇宙学家可以使用望远镜图像计算出不同星体之间的距离,由此判断暗能量对于宇宙膨胀的影响。与哈勃常数相关的膨胀率一直是个备受争议的话题,各方科学家对其具体数值始终莫衷一是。
Perlmutter将集中处理暗能量光谱仪捕捉的图像,并帮助研究人员确定望远镜接下来值得关注的新区域。该传感器每晚可收集多达15万个数据点,手动检查各星系光谱显然没有现实可行性,必须借助超级计算机之力实现自动化。劳伦斯伯克利国家实验室的科学家们希望在Perlmutter的帮助下,将数据的处理周期由以往的几周甚至几个月缩短为几天。
NERSC数据架构师Rollin Thomas致力于推进团队对于系统软件的应用,他认为GPU能够显著加速数字计算流程。他强调,“在准备工作中,我们使用GPU实现了20倍加速效果,我个人对此非常满意。”
这台超级计算机还支持OpenMP与英伟达HPC SDK——这是一套编译器与软件库,能够在GPU上对使用C++及Fortran编写的科学计算进行加速。Rapids则是英伟达在该计算机上配套使用的另一套框架,用于支持Python编写的数据科学应用程序。
劳伦斯伯克利国家实验室一位发言人在采访中表示,“Perlmutter系统将在推动美国科学研究方面发挥关键作用,并在包括先进计算、人工智能与数据科学在内的诸多关键技术领域保持领先及核心地位。”
“这套系统还将被广泛应用于气候与环境、清洁能源技术、半导体与微电子学、以及量子信息科学的研究。”
Perlmutter将成为NERSC的旗舰超级计算机,取代2016年安装部署的Cori系统(性能为30千万亿次)。Cori将被逐步拆解并最终彻底淘汰。
好文章,需要你的鼓励
惠普企业(HPE)发布搭载英伟达Blackwell架构GPU的新服务器,抢占AI技术需求激增市场。IDC预测,搭载GPU的服务器年增长率将达46.7%,占总市场价值近50%。2025年服务器市场预计增长39.9%至2839亿美元。英伟达向微软等大型云服务商大量供应Blackwell GPU,每周部署约7.2万块,可能影响HPE服务器交付时间。HPE在全球服务器市场占13%份额。受美国出口限制影响,国际客户可能面临额外限制。新服务器将于2025年9月2日开始全球发货。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
安全专业协会ISACA面向全球近20万名认证安全专业人员推出AI安全管理高级认证(AAISM)。研究显示61%的安全专业人员担心生成式AI被威胁行为者利用。该认证涵盖AI治理与项目管理、风险管理、技术与控制三个领域,帮助网络安全专业人员掌握AI安全实施、政策制定和风险管控。申请者需持有CISM或CISSP认证。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。